2x2+5x-1<=7\(\sqrt{x^3-1}\)
giải bất phương trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
2\(x^2\) - 5 \(\sqrt{x^2-5x+7}\) = 10\(x\) - 17 Đk \(x^2\) - 5\(x\) + 7 ≥ 0
\(x^2\) - 2.\(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{3}{4}\) = (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{3}{4}\) > 0 ∀ \(x\)
ta có: 2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) = 10\(x\) - 17
2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) - 10\(x\) + 17 = 0
(2\(x^2\) - 10\(x\) + 14) - 5\(\sqrt{x^2-5x+7}\) + 3 = 0
2.(\(x^2\) - 5\(x\) + 7) - 5.\(\sqrt{x^2-5x+7}\) + 3 = 0
Đặt \(\sqrt{x^2-5x+7}\) = y > 0 ta có:
2y2 - 5y + 3 = 0
2 + (-5) + 3 = 0
⇒ y1= 1; y2 = \(\dfrac{3}{2}\)
TH1 y = 1 ⇒ \(\sqrt{x^2-5x+7}\) = 1
⇒ \(x^2\) - 5\(x\) + 7 = 1
\(x^2\) - 5\(x\) + 6 = 0
\(\Delta\) = 25 - 24 = 49
\(x_1\) = \(\dfrac{-\left(-5\right)+\sqrt{1}}{2}\) = 3;
\(x_2\) = \(\dfrac{-\left(-5\right)-\sqrt{1}}{2}\) = 2;
TH2 y = \(\dfrac{3}{2}\)
\(\sqrt{x^2-5x+7}\) = \(\dfrac{3}{2}\)
\(x^2\) - 5\(x\) + 7 = \(\dfrac{9}{4}\)
4\(x^2\) - 20\(x\) + 28 = 9
4\(x^2\) - 20\(x\) + 19 = 0
\(\Delta'\) = 102 - 4.19
\(\Delta'\) = 24
\(x_1\) = \(\dfrac{-\left(-10\right)+\sqrt{24}}{4}\) = \(\dfrac{10+\sqrt{24}}{4}\)
\(x_2\) = \(\dfrac{-\left(-10\right)-\sqrt{24}}{4}\) = \(\dfrac{10-\sqrt{24}}{4}\)
8 - 5\(\sqrt{6}\)
Từ các lập luận trên kết luận phương trình có tập nghiệm là:
S = {8 - 5\(\sqrt{6}\); 2 ; 3; 8 + 5\(\sqrt{6}\)}
2�2x2 - 5 �2−5�+7x2−5x+7 = 10�x - 17 Đk �2x2 - 5�x + 7 ≥ 0
�2x2 - 2.5225�x + 254425 + 3443 = (�x - 5225)2 + 3443 > 0 ∀ �x
ta có: 2�2x2 - 5�2−5�+7x2−5x+7 = 10�x - 17
2�2x2 - 5�2−5�+7x2−5x+7 - 10�x + 17 = 0
(2�2x2 - 10�x + 14) - 5�2−5�+7x2−5x+7 + 3 = 0
2.(�2x2 - 5�x + 7) - 5.�2−5�+7x2−5x+7 + 3 = 0
Đặt �2−5�+7x2−5x+7 = y > 0 ta có:
2y2 - 5y + 3 = 0
2 + (-5) + 3 = 0
⇒ y1= 1; y2 = 3223
TH1 y = 1 ⇒ �2−5�+7x2−5x+7 = 1
⇒ �2x2 - 5�x + 7 = 1
�2x2 - 5�x + 6 = 0
ΔΔ = 25 - 24 = 49
�1x1 = −(−5)+122−(−5)+1 = 3;
�2x2 = −(−5)−122−(−5)−1 = 2;
TH2 y = 3223
�2−5�+7x2−5x+7 = 3223
�2x2 - 5�x + 7 = 9449
4�2x2 - 20�x + 28 = 9
4�2x2 - 20�x + 19 = 0
Δ′Δ′ = 102 - 4.19
Δ′Δ′ = 24
�1x1 = −(−10)+2444−(−10)+24 = 10+244410+24
�2x2 = −(−10)−2444−(−10)−24 = 10−244410−24
8 - 566
Từ các lập luận trên kết luận phương trình có tập nghiệm là:
S = {8 - 566; 2 ; 3; 8 + 566}
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(\Leftrightarrow2x^2+x-3+2x-\sqrt{5x-1}+\sqrt[3]{x-9}+2\le0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{4x^2-5x+1}{2x+\sqrt{5x-1}}+\dfrac{x-1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\le0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt{5x-1}}+\dfrac{1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\right)\le0\)
\(\Leftrightarrow x-1\le0\)
\(\Rightarrow\dfrac{1}{5}\le x\le1\)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
ĐKXĐ: \(x>\dfrac{1}{5}\)
\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)
\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)
\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)
\(\Leftrightarrow\sqrt{5x-1}>1-3x\)
TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)
TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)
Kết luận: \(x>\dfrac{2}{9}\)
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
`Answer:`
ĐK: `x^3-1>=0`
`<=>(x-1)(x^2+x+1)>0`
`<=>x>=1`
PT tương đương: `2.(x^2+x+1)+3(x-1)=7\sqrt{(x^2+x+1)(x-1)}`
Đặt `a=\sqrt{x^2+x+1}<=>a^2=x^2+x+1;b=\sqrt{x-1}<=>b^2=x-1`
PT tương đương: `2a^2+3b^2=7ab`
`<=>2a^2-7ab+3b^2=0`
`<=>2a^2-ab-6ab+3b^2=0`
`<=>a(2a-b)-3b(2a-1)=0`
`<=>(2a-b)(a-3b)=0`
`<=>2a=b` hoặc `a=3b`
Với `2a=b:`
`2\sqrt{x^2+x+1}=3\sqrt{x-1}`
`<=>4(x^2+x+1)=9(x-1)`
`<=>4x^2-5x+13=0`
`\Delta=5^2-4.4.13<0`
Vậy phương trình vô nghiệm.
Với `a=3b:`
`\sqrt{x^2+x+1}=3\sqrt{x-1}`
`<=>x^2+x+1=9(x-1)`
`<=>x^2-8x+10=0`
`\Delta'=4^2-10=6`
`<=>x=4+-\sqrt{6}`
Vậy phương trình cố nghiệm là `x=4+-\sqrt{6}`
`