K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

a/ Xét hai tg vuông AIH và AHC có ^HAC chung => AIH đồng dạng AHC

b/ Ta có

2.S(ABC)=AH.BC

2.S(AHC)=AH.CH

mà CH=BC/2

=> S(ABC)=2.S(AHC) => \(\frac{AH.BC}{2}=IH.AC\) mà AC=AB nên

\(\frac{AH.BC}{2}=IH.AB\Rightarrow AH.BC=2.IH.AB\)

c/ Ta có

\(AH^2=AI.AC=16.\left(16+9\right)=16.25=4^2.5^2=\left(4.5\right)^2=400\Rightarrow AH=20\)

\(HC^2=CI.AC=9.\left(9+16\right)=3^2.5^2=\left(3.5\right)^2=15^2\Rightarrow HC=15\Rightarrow BC=2.HC=30\)

\(S_{ABC}=\frac{AH.BC}{2}=\frac{20.30}{2}=300\)

d/

7 tháng 6 2021

B A C E M H D

a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung

b,\(\Delta ABC\sim\Delta HBA\) theo a

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)

                                     \(=4.\left(4+9\right)\)

\(\Rightarrow AB=2\sqrt{13}\) (cm)

Áp dụng định lí py-ta-go trong \(\Delta ABH\):

\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)

Vì \(AH=DE=6cm\)

c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung

\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)

Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)

-Chúc bạn học tốt-

7 tháng 6 2021

Kí hiệu: \(\sim\) này là đồng dạng nha

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

DO đó:ΔABC\(\sim\)ΔHBA

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

c: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó:ADHE là hình chữ nhật

Suy ra: AH=DE

mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)

nên DE=8cm

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=4\cdot13=52\\AH^2=4\cdot9=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}\left(cm\right)\\AH=6\left(cm\right)\end{matrix}\right.\)

Xét tứ giác AEHD có 

\(\widehat{EAD}=90^0\)

\(\widehat{AEH}=90^0\)

\(\widehat{ADH}=90^0\)

Do đó: AEHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=ED(Hai đường chéo)

mà AH=6cm(cmt)

nên ED=6cm

ai đó giúp me vs

 

a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔAEB và ΔIEC có

góc BAE=góc EIC

góc AEB=góc IEC

=>góc ABE=góc ICE=góc IBC

=>ΔIEC đồng dạng với ΔICB

=>IE/IC=IC/IB

=>IC^2=IE*IB

c: Xét ΔBNC có 

BI vừa là phân giác, vừa là đường cao

=>ΔBNC cân tại B

=>I là trung điểm của NC

ΔNAC vuông tại A

mà I là trung điểm của NC

nên IA=IN=IC

=>IN^2=IE*IB

và IA=IM

nên IM^2=IE*IB

=>IM/IE=IB/IM

=>ΔIMB đồng dạng với ΔIEM

=>góc IMB=90 độ

=>ĐPCM