Cho biểu thức A=1+1/3+1/3^2+1/3^3......+1/3^2014.Hay so sánh A với 3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Trung Dũng - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)
\(3A-A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\right)\)
\(2A=3-\frac{1}{3^{2014}}\)
\(A=\frac{3}{2}-\frac{1}{2.3^{2014}}< \frac{3}{2}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)
\(\Rightarrow3A-A=3-\frac{1}{3^{2014}}\)
\(\Rightarrow A=\frac{3}{2}-\frac{1}{3^{2014}.2}< \frac{3}{2}\)
A=1+1/3+1/3^2+...+1/3^2014
3A=3.(1+1/3+1/3^2+...+1/3^2014)
3A=3+1+1/3+....+1/3^2013
Lấy 3A-A ra 2A=3-1/3^2014(nhớ quy tắc phá ngoặc và chuyển dấu nhé)
A=(3-1/3^2014):2=3/2-1/3^2014.2
suy ra A<3/2
Vậy A<3/2
Bài làm của mình có thể có nhiều sai sót mong các bạn sẽ giúp đỡ mình để lần sau bài làm của mình sẽ hoàn thiện hơn
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)
\(\Rightarrow3A-A\)= \(\left(3+1+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^{2014}}\right)\)
\(\Rightarrow2A=3-\frac{1}{3^{2014}}\)
\(\Rightarrow A=\frac{3-\frac{1}{3^{2014}}}{2}\)
\(\Rightarrow A=\frac{3}{2}-\frac{\frac{1}{3^{2014}}}{2}< \frac{3}{2}\)
Vậy \(A< \frac{3}{2}\)
Chúc bạn học tốt !!!
A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
A=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
A=\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2015.2016}\right)\)
A=\(\frac{1}{4}-\frac{1}{2015.2016.2}\)\(\Rightarrow A<\frac{1}{4}\)
\(A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}\)
\(3A=3\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}\right)\)
\(3A=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{2013}}\)
\(3A-A=\left(3+1+...+\dfrac{1}{3^{2013}}\right)-\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{2014}}\right)\)
\(2A=3-\dfrac{1}{3^{2014}}\Rightarrow A=\dfrac{3}{2}-\dfrac{\dfrac{1}{3^{2014}}}{2}< \dfrac{3}{2}\)
Vậy \(A< \dfrac{3}{2}\)
A=1+13+132+133+...+132014A=1+13+132+133+...+132014
3A=3(1+13+132+133+...+132014)3A=3(1+13+132+133+...+132014)
3A=3+1+13+...+1320133A=3+1+13+...+132013
3A−A=(3+1+...+132013)−(1+13+...+132014)3A−A=(3+1+...+132013)−(1+13+...+132014)
2A=3−132014⇒A=32−1320142<32
\(A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2014}}\)
\(A=\left(3A-A\right):2\)
\(3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)
\(A=\left(3-\frac{1}{3^{2014}}\right):2\)
\(A=\frac{3}{2}-\frac{1}{2.3^{2014}}\)
\(\Rightarrow A<\frac{3}{2}\)