Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Trung Dũng - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
A=1+1/3+1/3^2+...+1/3^2014
3A=3.(1+1/3+1/3^2+...+1/3^2014)
3A=3+1+1/3+....+1/3^2013
Lấy 3A-A ra 2A=3-1/3^2014(nhớ quy tắc phá ngoặc và chuyển dấu nhé)
A=(3-1/3^2014):2=3/2-1/3^2014.2
suy ra A<3/2
Vậy A<3/2
Bài làm của mình có thể có nhiều sai sót mong các bạn sẽ giúp đỡ mình để lần sau bài làm của mình sẽ hoàn thiện hơn
\(A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2014}}\)
\(A=\left(3A-A\right):2\)
\(3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)
\(A=\left(3-\frac{1}{3^{2014}}\right):2\)
\(A=\frac{3}{2}-\frac{1}{2.3^{2014}}\)
\(\Rightarrow A<\frac{3}{2}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)
\(\Rightarrow3A-A\)= \(\left(3+1+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^{2014}}\right)\)
\(\Rightarrow2A=3-\frac{1}{3^{2014}}\)
\(\Rightarrow A=\frac{3-\frac{1}{3^{2014}}}{2}\)
\(\Rightarrow A=\frac{3}{2}-\frac{\frac{1}{3^{2014}}}{2}< \frac{3}{2}\)
Vậy \(A< \frac{3}{2}\)
Chúc bạn học tốt !!!
Ta có:
A=1+1/3+1/32+1/33+...+1/32014
=>3A=3+1/32+1/33+1/34+...+1/32015
=>2A=2+1/32015-1/3
=>A=1+2/32015-2/3
OK!
\(A=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right):2\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right):2\)
\(=\left(1-\frac{1}{2017}\right):2\)\(< \)\(\frac{1}{2}\) (Do 1 - 1/2017 < 1)
2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)
\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)
Nên suy ra \(10A>10B\Rightarrow A>B\)
Ta thấy:2013/2024<1
2014/2025<1
2015/2013>1
Để 2013/2024+2014/2025+2015+2013 lớn hơn hoặc bằng 3 <=>2013/2024,2014/2025,2015/2013 lớn hơn hoặc bằng 1 hoặc nếu 2013/2024<1 và 2014/2025<1=>2015/2013 phải lớn hơn hoặc bằng 2
Mà 2013/2024<1,2014/2025<1,2015/2013<2
=>A<3
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)
\(3A-A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\right)\)
\(2A=3-\frac{1}{3^{2014}}\)
\(A=\frac{3}{2}-\frac{1}{2.3^{2014}}< \frac{3}{2}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)
\(\Rightarrow3A-A=3-\frac{1}{3^{2014}}\)
\(\Rightarrow A=\frac{3}{2}-\frac{1}{3^{2014}.2}< \frac{3}{2}\)