cho parabol (p) : y=X2 va duong thang (d):y=4x- m2+16
1 Tìm tọa độ các giao điểm của (p) va (d) khi M=2
2 Tìm m để (d) cát p)tại hai điểm nam ve hai phia cua truc tung
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1
Lời giải:
1. PT hoành độ giao điểm:
$x^2-(2x-m^2+9)=0\Leftrightarrow x^2-2x+m^2-9=0(*)$
Khi $m=1$ thì pt trên trở thành: $x^2-2x-8=0$
$\Leftrightarrow (x-4)(x+2)=0\Rightarrow x=4$ hoặc $x=-2$
Khi $x=4\Rightarrow y=x^2=16$. Giao điểm thứ nhất là $(4,16)$
Khi $x=-2\Rightarrow y=x^2=4$. Giao điểm thứ hai là $(-2,4)$
2. $(P)$ và $(d)$ cắt nhau tại 2 điểm phân biệt $\Leftrightarrow (*)$ có 2 nghiệm phân biệt (hai nghiệm ấy chính là giá trị của 2 hoành độ giao điểm)
$\Leftrightarrow \Delta'=1-(m^2-9)>0\Leftrightarrow 10>m^2(1)$
Hai giao điểm nằm về phía của trục tung, nghĩa là 2 hoành độ giao điểm $x_1,x_2$ trái dấu. Điều này xảy ra khi $x_1x_2< 0\Leftrightarrow m^2-9< 0(2)$
Từ $(1);(2)$ suy ra $m^2-9< 0\Leftrightarrow -3< m< 3$
b. Phương trình hoành độ giao điểm:
\(x^2=4x-m\Leftrightarrow x^2-4x+m=0\) (1)
d cắt (P) tại 2 điểm phân biệt khi và chỉ khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta'=4-m>0\Rightarrow m< 4\)
Khi đó kết hợp hệ thức Viet và điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=4\\2x_1+x_2=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-9\\x_2=13\end{matrix}\right.\)
Mà \(x_1x_2=m\)
\(\Rightarrow m=-9.13=-117\)
a) Thay m=6 vào (d), ta được: y=4x-6
Phương trình hoành độ giao điểm của (P) và (d) là:
\(2x^2=4x-6\)
\(\Leftrightarrow2x^2-4x+6=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot6=16-48=-32\)(loại)
Vì Δ<0 nên phương trình vô nghiệm
Vậy: Khi m=6 thì (P) và (d) không có điểm chung
b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi
Khi đó 2 nghiệm của phương trình là:
Kẻ BB' ⊥ OM ; AA' ⊥ OM
Ta có:
S A O M = 1/2 AA'.OM ; S B O M = 1/2 BB'.OM
Theo bài ra:
Do m > 0 nên m = 8
Vậy với m = 8 thì thỏa mãn điều kiện đề bài.
b: Thay m=2 vào (d), ta được:
y=2x-2+1=2x-1
Phương trình hoành độ giao điểm là:
\(x^2=2x-1\)
=>\(x^2-2x+1=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=2x-m+1\)
=>\(x^2-2x+m-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)
=4-4m+4
=-4m+8
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
y1,y2 thỏa mãn gì vậy bạn?