K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2016

1/x + 1/y >= 4/x+y

<=> x+y/xy >= 4/x+y

<=> (x+y)^2/xy(x+y) >= 4xy/xy(x+y)

<=> x^2 + y^2 + 2xy >= 4xy (x,y > 0)

<=> x^2 + y^2 + 2xy - 4xy >= 0

<=> (x-y)^2 >= 0 ( luôn đúng với mọi x,y)

Vậy bất đẳng thức đề bài đúng

20 tháng 12 2021

Đề đây ạ:

Tìm các số nguyên x và y sao cho (x-3)(x+y)=7

10 tháng 8 2016

Giải

Vì a x 0 = 0

=>  123456789 x 0 x 0 x 0 x 0 x 0 = 0

10 tháng 8 2016

123456789x0x0x0x0x0

=0

Chúc bạn học giỏi nha!!!

K mik mik k lại 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Xét dãy số \(\left( {{u_n}} \right)\) sao cho \({u_n} < 0\) và \(\lim {u_n} = 0.\) Khi đó \(f\left( {{u_n}} \right) =  - 1\) và \(\lim f\left( {{u_n}} \right) =  - 1.\)

b) Xét dãy số \(\left( {{v_n}} \right)\) sao cho \({v_n} > 0\) và \(\lim {v_n} = 0.\) Khi đó \(f\left( {{v_n}} \right) = 1\) và \(\lim f\left( {{v_n}} \right) = 1.\)

NV
5 tháng 5 2021

\(\left\{{}\begin{matrix}x-3y=0\\\left(a-1\right)x-3y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\\left(a-2\right)x=2\end{matrix}\right.\)

Với \(a=2\) hệ vô nghiệm (ktm)

Với \(a\ne2\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{2}{a-2}\\y=\dfrac{x}{3}=\dfrac{2}{3\left(a-2\right)}\end{matrix}\right.\)

Để x>0; y>0

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{a-2}>0\\\dfrac{2}{3\left(a-2\right)}>0\end{matrix}\right.\) \(\Rightarrow a-2>0\Rightarrow a>2\)

24 tháng 12 2015

Ta  có x. (-x)=x.x.(-1)=-x^2>0

       ==> x^2<0 (vì âm của nó là dương)       (1)

              mà x>0==>x^2>0                          (2)

Từ (1) và (2) ==> mâu thuẫn

Vậy x thuộc rỗng

30 tháng 12 2015

trong câu hỏi tương tự hay trên google đều không có đâu các bạn ạ

Chọn B

14 tháng 8 2020

a) 

Với A=0

\(\Rightarrow x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

với A<0

\(\Rightarrow x\left(x-4\right)< 0\)

\(th1\orbr{\begin{cases}x< 0\\x-4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x>4\end{cases}\Leftrightarrow4< x< 0\left(vl\right)}\)

\(th2\orbr{\begin{cases}x>0\\x-4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x< 4\end{cases}\Leftrightarrow0< x< 4\left(tm\right)}\)

\(\Leftrightarrow0< x< 4\Leftrightarrow x\in\left\{1;2;3\right\}\)

Với A>0

\(\Rightarrow x\left(x-4\right)>0\)

\(th1\orbr{\begin{cases}x>0\\x-4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x>4\end{cases}}\Leftrightarrow x>4\)

\(th2\orbr{\begin{cases}x< 0\\x-4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x< 4\end{cases}}\Leftrightarrow x< 0\)

14 tháng 8 2020

b) 

Với B=0

\(\Rightarrow\frac{x-3}{x}=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\Rightarrow x=3\\x=0\left(l\right)\end{cases}}\)

vậy x=3 thì B = 0

Với B < 0

\(\Rightarrow\frac{x-3}{x}< 0\)

\(th1\orbr{\begin{cases}x-3>0\\x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>3\\x< 0\end{cases}\Leftrightarrow3< x< 0\left(vl\right)}\)

\(th2\orbr{\begin{cases}x-3< 0\\x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 3\\x>0\end{cases}\Leftrightarrow0< x< 3\left(tm\right)\Leftrightarrow x\in\left\{1;2\right\}}\)

Với B > 0

\(th1\orbr{\begin{cases}x-3>0\\x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>3\\x>0\end{cases}\Leftrightarrow x>3}\)

\(th2\orbr{\begin{cases}x-3< 0\\x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 0\end{cases}\Leftrightarrow x< 0}\)

12 tháng 7 2019

Chọn C.