\(x+y\le1\)

chứng minh rằng : \(\fr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2016

1/x + 1/y >= 4/x+y

<=> x+y/xy >= 4/x+y

<=> (x+y)^2/xy(x+y) >= 4xy/xy(x+y)

<=> x^2 + y^2 + 2xy >= 4xy (x,y > 0)

<=> x^2 + y^2 + 2xy - 4xy >= 0

<=> (x-y)^2 >= 0 ( luôn đúng với mọi x,y)

Vậy bất đẳng thức đề bài đúng

14 tháng 3 2018

Theo Cauche có: 

\(\left(x+x+y+z\right)\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4\sqrt[4]{x^2yz}.4\sqrt[4]{\frac{1}{x^2.y.z}}=16\)

=> \(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{16}{2x+y+z}\). Tương tự có: 

\(\frac{2}{y}+\frac{1}{x}+\frac{1}{z}\ge\frac{16}{x+2y+z}\) và \(\frac{2}{z}+\frac{1}{y}+\frac{1}{x}\ge\frac{16}{x+y+2z}\)

=> \(16.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le\frac{2}{x}+\frac{1}{y}+\frac{1}{z}+\frac{2}{y}+\frac{1}{x}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}+\frac{1}{y}\)

\(16.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le4.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=4.4=16\)

Chia cả 2 vế cho 16 => ĐPCM

28 tháng 8 2021

Áp dụng BĐT BSC và BĐT Cosi:

\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)

\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)

\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)

\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)

\(=35\)

\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

28 tháng 8 2021

Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :

\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)

\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)

\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )

Dấu "=" xảy ra <=> x=y=z=1/3

25 tháng 1 2018

Đặt : A = 1/x^2+xy + 1/y^2+xy

Có : A = 1/x.(x+y) + 1/y.(x+y) = 1/x + 1/y ( vì x+y = 1 )

Áp dụng bđt 1/a + 1/b >= 4/a+b với mọi a,b > 0 cho x,y > 0 thì :

A >= 4/x+y = 4/1 = 4

Dấu "=" xảy ra <=> x=y=1/2

=> ĐPCM

Tk mk nha

21 tháng 7 2020

a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)

Dấu "=" xảy ra <=> a=b

Áp dụng BĐT (*) vào bài toán ta có:

\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Tiếp tục áp dụng BĐT (*) ta có:

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)

21 tháng 7 2020

b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:

\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)

Cộng theo vế 3 BĐT ta có:

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra <=> a=b=c

23 tháng 5 2019

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)

\(=\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}+\frac{1}{\left(x+z\right)+\left(y+z\right)}\)

\(\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\("="\Leftrightarrow x=y=z=\frac{3}{4}\)

23 tháng 5 2019

Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:

\(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{16}{2x+y+z}\)

\(\Rightarrow\frac{1}{16}.\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{2x+y+z}\)

CMTT: \(\frac{1}{x+2y+z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\), \(\frac{1}{x+y+2z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

\(\Rightarrow\Sigma\frac{1}{2x+y+z}\le\frac{1}{16}.4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)=\frac{1}{16}.16=1\)

\(''=''\Leftrightarrow x=y=z=\frac{3}{4}\)

31 tháng 1 2015

Áp dụng bđt : Với a>0 ; b>0 thì 1/b + 1/b >=4/(a+b) ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\ge4\)( vì 0 = < x + y <=1)

22 tháng 4 2017

Áp dụng BĐT AM-GM ta có: 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\)

\(=\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}=\frac{\left(x+y+\frac{x+y}{xy}\right)^2}{2}\)

Lại có: \(1=x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)

Khi đó \(A\ge\frac{\left(1+\frac{1}{xy}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)