Cho A=1+3+5+..+2n-1.Hỏi A có phải là số chính phương hay không?Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số số hàng trong tổng A là:
\(\frac{\left(2n+1-1\right)}{2}+1=n+1\)
\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)
Do n là số tự nhiên nên A là số chính phương.
b) Số số hạng trong tổng B là:
\(\frac{2n-2}{2}+1=n\)
\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)
Vậy số B không thể là số chính phương.
P = 1 + 50 + 51 + 52 + 53 +.......+5100
P = 1 + 1 + ( 51 + 52 + 53+........+5100)
P = 2 + 5.( 1 + 5 + 52 +..........+599)
Vì 5.( 1 + 5 + 52+......+599) ⋮ 5 ⇒ P : 5 dư 2
Một số chính phương chia 5 chỉ có thể dư 1 hoặc 4 mà p chia 5 dư 2 vậy p không phải là số chính phương
số các số hạng của a là:
[(2n-1)-1]:2+1=n(số)
=>A là:(2n-1+1)n:2==2n.n:2=n.n=n2
=>A là số chính phương
=>đpcm
Số số hạng là :
[(2n - 1) - 1] : 2 = (2n - 2) : 2 = n - 1 (số hạng)
Tổng A là :
[(2n - 1) + 1] . (n - 1) : 2 = 2n . (n - 1) : 2 = n . (n - 1) = n2 - n
Do đó A không phải là số chính phương.
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 5198)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
a. Ta có: A = 5 + 52 + 53 +....+ 5100
\(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)
\(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.
B=[(2n-1-1):2+1].(2n-1+1):2
=n.2n:2
=n2
B là 1 số chính phương
a) B =\(\frac{\left\{\left(2n-1+1\right)\cdot\left[\frac{\left(2n-1-1\right)}{2}+1\right]\right\}}{2}\)
=\(\frac{\left[2n\cdot\left(n-1+1\right)\right]}{2}=n^2\)
b) B là số chính phương.
ta chứng minh \(A=n^2\)
thật vậy
với n=1 , thì \(A=1=1^2\) đúng
ta giả sử đẳng thức đúng tới k ,tức là :
\(1+3+5+..+2k-1=k^2\)
Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)
vậy đẳng thức đúng với k+1
theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương