Chứng minh : A = n^2 + 3n +3 không chia hết với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n = 2k (k thuộc N)=> 3n+2016 = 3.2k+2016 = 6k+2016 chia hết cho 2 => (3n+2015)(3n+2016) chia hết cho 2 hay A chia hết cho 2
Nếu n=2k+1(k thuộc N) => 3n+2015=3(2k+1)+2015=6k+2018 chia hết cho 2 => (3n+2015)(3n+2016) chia hết cho 2 hay A chia hết cho 2
Vậy...
với n thuộc N
\(\Rightarrow\)( 3n + 2015 ) ( 3n + 2016 ) là 2 số liên tiếp
\(\Rightarrow\)(3n + 2016 ) ( 3n + 2016 ) chia hết cho 2
(giả sử ( 3n + 2015 ) là chẵn thì ( 3n + 2016 ) là lẻ
Giả sử A = n^2 + 3n + 5 chia hết cho 121
=> 4A = 4n^2 + 12n + 20 chia hết cho 121
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1)
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11)
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2)
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí)
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N . k cho mình nha bạn
Bg
Ta có n không chia hết cho 2 và 3 (n \(\inℤ\))
=> n không chia hết cho 6
Vì n không chia hết cho 6 và 2 và 3 nên n chia 6 dư 1 và chia 6 dư 5.
=> n có dạng 6x + 1 hoặc 6x + 5 (với x \(\inℤ\))
Xét n = 6x + 1:
=> 4.(n2) + 3n + 5 = 4.(n2) + 3(6x + 1) + 5
Vì n chia 6 dư 1 nên n2 chia 6 dư 1 => n2 có dạng 6x + 1 luôn
= 4(6x + 1) + 3(6x + 1) + 5
= 24x + 4 + 18x + 3 + 5
= 24x + 18x + (4 + 3 + 5)
= 24x + 18x + 12
Vì 24x \(⋮\)6; 18x \(⋮\)6 và 12 \(⋮\)6
Nên 24x + 18x + 12\(⋮\)6
=> 4.(n2) + 3n + 5 \(⋮\)6
=> ĐPCM
a/ Nếu n chia hết cho 5 thì n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với mọi n
+ Nếu n chia 5 dư 1 thì n có dạng 5k+1 => n+4=5k+5=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 2 thì n có dạng n=5k+2 => n+3=5k+2+3=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 3 thì n có dạng n=5k+3 => n+2 =5K+3+2=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 4 thì n có dạng n=5k+4 => n+1 = 5k+4+1=5(k+1) chia hết cho 5
=> Biểu thức rên chia hết cho 5 với mọi n
b/
+ Nếu n lẻ => n+1 chẵn và 3n+2 lẻ => (n+1)(3n+2) chẵn => chia hết cho 2
+ Nếu n chẵn => n+1 lẻ và 3n+2 chẵn => (n+1)(3n+2) chẵn => chia hết cho 2
=> biểu thức chia hết cho 2 với mọi n thuộc N
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !