Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hai trường hợp :
TH1 : nếu n lẻ => 3n lẻ => 3n + 2015 chẵn => ( 3n + 2015 ) * ( 3n + 2016 ) chia hết cho 2
TH2 : nêu n chẵn => 3n chẵn => 3n + 2016 chẵn => ( 3n + 2015 ) * ( 3n + 2016 ) chia hết cho 2
Với n thuộc N thì A=(3n+2015)(3n+2016) là tích của 2 số tự nhiên liên tiếp nên A chia hết cho 2.
(Có thể xét 2 th n là số chẵn và n là số lẻ để chứng minh)
ta có 2 trường hợp
TH1 : nếu n lẻ => 3n lẻ => 3n+2015 chẵn => (3n+20150(3n+2016) chia hết cho 2
TH2 : nếu n chẵn =>3n chẵn => 3n+2016 chẵn => (3n+2015)(3n+2016) chia hết cho 2
Vì ( 3n + 2015 ) và ( 3n + 2016 ) là 2 số tự nhiên liên tiếp nên 1 trong 2 số chia hết cho 2
Suy ra A chia hết cho 2
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
Nếu n = 2k (k thuộc N)=> 3n+2016 = 3.2k+2016 = 6k+2016 chia hết cho 2 => (3n+2015)(3n+2016) chia hết cho 2 hay A chia hết cho 2
Nếu n=2k+1(k thuộc N) => 3n+2015=3(2k+1)+2015=6k+2018 chia hết cho 2 => (3n+2015)(3n+2016) chia hết cho 2 hay A chia hết cho 2
Vậy...
với n thuộc N
\(\Rightarrow\)( 3n + 2015 ) ( 3n + 2016 ) là 2 số liên tiếp
\(\Rightarrow\)(3n + 2016 ) ( 3n + 2016 ) chia hết cho 2
(giả sử ( 3n + 2015 ) là chẵn thì ( 3n + 2016 ) là lẻ