K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

Xét tứ giác AEIF có 

\(\widehat{AEI}+\widehat{AFI}=180^0\)

Do đó: AEIF là tứ giác nội tiếp

6 tháng 1 2022

bạn giải hết được ko ạ

 

NV
25 tháng 3 2022

Gọi thời gian làm 1 mình xong công việc của người thứ nhất là x giờ (x>0)

Thời gian làm 1 mình xong công việc của người 2 là y giờ (y>0)

Trong 1h người thứ nhất làm 1 mình được \(\dfrac{1}{x}\) phần công việc, người 2 làm 1 mình được \(\dfrac{1}{y}\) phần công việc

Do 2 người cùng làm trong 18h thì xong nên:

\(18\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\)

Người thứ nhất làm 4h được: \(\dfrac{4}{x}\) phần công việc

Người thứ 2 làm trong 7h được: \(\dfrac{7}{y}\) phần công việc

Do... trong 7h được 1/3 công việc nên: \(\dfrac{4}{x}+\dfrac{7}{y}=\dfrac{1}{3}\)

Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{4}{x}+\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{54}\\\dfrac{1}{y}=\dfrac{1}{27}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=54\\y=27\end{matrix}\right.\)

Gọi chiều rộng là x

Chiều dài là x+15

Theo đề, ta có phương trình:

\(\left(x+5\right)\left(x+12\right)=x\left(x+15\right)+80\)

\(\Leftrightarrow x^2+17x+60-x^2-15x=80\)

=>2x+60=80

=>x=10

Vậy: Chiều rộng là 10m

Chiều dài là 25m

Gọi độ dài quãng đường là x

Theo đề, ta có: 

\(\dfrac{x}{42}-\dfrac{x}{46}=\dfrac{3}{4}\)

hay x=362,25(km)

6 tháng 3 2022

Gọi quãng đường AB là x (x>0)

Vận tốc xe máy đi từ A đến B là \(\dfrac{x}{30}\)

Vận tốc xe máy lúc về là \(\dfrac{x}{35}\)

Theo đề bài, ta có:

\(\dfrac{x}{30}-\dfrac{x}{35}=\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{7x-6x}{210}=\dfrac{70}{210}\)

\(\Leftrightarrow x=70\left(km\right)\left(tm\right)\)

Vậy quãng đường AB là 70km

3.1:

Ô tô đi hết 1h50'+40'=2h30'

3.2:

Ô tô đi hết:

17h50'-15h15'

=2h35'

3 tháng 4 2021

undefined

a) Xét (O) có

\(\widehat{BAD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

\(\widehat{CAD}\) là góc nội tiếp chắn \(\stackrel\frown{CD}\)

mà \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

nên \(\stackrel\frown{BD}=\stackrel\frown{CD}\)

hay BD=CD

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BD=CD(cmt)

nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OD là đường trung trực của BC

hay OD\(\perp\)BC(đpcm)

a: Khi x=2 thì (1) sẽ là:

4-2(m+2)+m+1=0

=>m+5-2m-4=0

=>1-m=0

=>m=1

x1+x2=m+1=3

=>x2=3-2=1

b: Δ=(m+2)^2-4(m+1)

=m^2+4m+4-4m-4=m^2>=0

=>Phương trình luôn có hai nghiệm

P=(x1+x2)^2-4x1x1+3x1x2

=(x1+x2)^2-x1x2

=(m+2)^2-m-1

=m^2+4m+4-m-1

=m^2+3m+3

=(m+3/2)^2+3/4>=3/4

Dấu = xảy ra khi m=-3/2

14 tháng 12 2021

\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)

Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)

\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)

Vậy \(x=2\)

14 tháng 12 2021

\(2,ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)

Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy ...