tìm 3 số nguyên a,b,c thỏa mãn:
a.b.c+a=2011
a.b.c+b=2013
a.b.c+c=2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)
=\(\frac{c}{c\left(1+a+ab\right)}+\frac{ca}{ca\left(1+b+bc\right)}+\frac{1}{1+c+ca}\)
=\(\frac{c}{c+ca+abc}+\frac{ca}{ca+abc+abc.c}+\frac{1}{1+c+ca}\)
thay abc = 1 ta được
\(S=\frac{c}{c+ca+1}+\frac{ca}{ca+1+c}+\frac{1}{1+c+ca}\)(cùng mẫu c+ca+1)
\(=\frac{c+ac+1}{c+ac+1}=1\)
=> a+b-c+a-b+c-a+b+c = 15+21-2015
=> a+b+c = -1979
=> a = 18 ; b = -1000 ; c = -997
Tk mk nha
vì a-2015; b-2015; c-2015 là 3 số nguyên liên tiếp=> a+1=b; a+2=c
ta có:(a-2015)+(b-2015)+ (c-2015) =2016
=>(a-2015)+(a+1-2015)+(a+2-2015)=2016
=>(a*-2015)+(a-2014)+(a-2013)=2016
=>3a-(2015+2014+2013)=2016
=>3a-6042=2016
=>3a=2016+6042=8058
=>a=8058:3=2686
=>b=2686+1=2687
=>c=2686+2=2688
cho các số nguyên a,b,c thỏa mãn
a.b.c=2015^2016
tìm số dư của phép chia 19.a^2+5.b^2+1890.c^2 cho 24