K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2023

a) ∠CEz + ∠zEy' = 180⁰ (kề bù)

⇒ ∠CEz = 180⁰ - ∠zEy'

= 180⁰ - 120⁰

= 60⁰

⇒ ∠CEz = ∠xDz = 60⁰

Mà ∠CEz và ∠xDz là hai góc đồng vị

⇒ xx' // yy'

b) Do HC ⊥ xx' (gt)

xx' // yy' (cmt)

⇒ HC ⊥ yy'

c) Do HC ⊥ yy' (cmt)

⇒ ∠HCy = 90⁰

⇒ ∠BCy = ∠HCy - ∠BCH

= 90⁰ - 40⁰

= 50⁰

c) Vẽ tia Bt // xx'//yy'

⇒ ∠CBt = ∠BCy = 50⁰ (so le trong)

⇒ ∠ABt = ∠ABC - ∠CBt

= 90⁰ - 50⁰

= 40⁰

Do Bt // xx'

⇒ ∠xAB = ∠ABt = 40⁰ (so le trong)

Ta có:

∠BAx' + ∠xAB = 180⁰ (kề bù)

⇒ ∠BAx' = 180⁰ - ∠xAB

= 180⁰ - 40⁰

= 140⁰

e) Do AB cắt tia Bt tại B

Mà Bt // yy'

⇒ AB cắt yy'

1 tháng 11 2023

loading...  

5 tháng 11 2023

loading...  

5 tháng 11 2023

Có vẽ hình nha mn

5 tháng 11 2023

loading...  

 

OM\(\perp\)AB

=>\(\widehat{MOA}=\widehat{MOB}=90^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\widehat{AOE}< \widehat{AOM}\)

nên tia OE nằm giữa hai tia OA và OM

=>\(\widehat{AOE}+\widehat{MOE}=\widehat{AOM}=90^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OB, ta có: \(\widehat{BOF}< \widehat{BOM}\)

nên tia OF nằm giữa hai tia OB và OM

=>\(\widehat{BOF}+\widehat{MOF}=\widehat{BOM}=90^0\)

=>\(\widehat{AOE}+\widehat{MOE}=\widehat{BOF}+\widehat{MOF}\)

mà \(\widehat{AOE}=\widehat{BOF}\)

nên \(\widehat{MOE}=\widehat{MOF}\)

=>OM là phân giác của \(\widehat{EOF}\)

4 tháng 8 2023

đoán xem

 

4 tháng 8 2023

lớp 6A của một trường trung học cơ sở có 45 học sinh cuối học kì 1 kết quả học tập gồm 3 loại tốt khá Đạt không có học sinh nào xếp loại chưa đạt số học số học sinh xếp loại tốt bằng 1/3 số học sinh xếp loại cả lớp số học sinh xếp loại khá bằng 8/5 số học sinh xếp loại tốt còn lại là số học sinh xếp loại Đạt tính số học sinh ở mỗi loại của tốt khá cho mình đạt của lớp 6A

5 tháng 1 2021

\(A^3_n+5A^2_n=2\left(n+15\right)\)

ĐK: n ≥ 3 (n∈N)

<=> \(\dfrac{n!}{\left(n-3\right)!}+\dfrac{5.n!}{\left(n-2\right)!}=2\left(n+15\right)\)

<=> \(\dfrac{n\left(n-1\right)\left(n-2\right)\left(n-3\right)!}{\left(n-3\right)!}+\dfrac{5n\left(n-1\right)\left(n-2\right)!}{\left(n-2\right)!}=2\left(n+15\right)\)

<=> \(n\left(n-1\right)\left(n-2\right)+5\left(n-1\right)n-2n-30=0\)

<=> \(n^3+2n^2-5n-30=0\) <=> n=3

 

 

 

5 tháng 1 2021

undefined

31 tháng 5 2020

Nếu bạn không làm được thì vào đội tuyển làm gìucche

31 tháng 5 2020

nhưng mk là đ.tuyển anh lp 6,nhưng mk thấy đây là đề hs giỏi lớp 7 đó,thằng cờ hó nào lm đc âu

23 tháng 12 2017

cho mk xin đề lớp 6 với

23 tháng 12 2017

Dạ bạn xin đề môn gì ạ

bạn vào nhắn tin vs mk nhé

8 tháng 12 2023

loading...  loading...  

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{3}< >-\dfrac{1}{m}\)

=>\(m^2\ne-3\)(luôn đúng)

Ta có: \(\left\{{}\begin{matrix}mx-y=2\\3x+my=3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m\left(mx-2\right)=3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m^2x-2m=3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+3\right)=5m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m}{m^2+3}\\y=m\cdot\dfrac{5m}{m^2+3}-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5m}{m^2+3}\\y=\dfrac{5m^2-2m^2-6}{m^2+3}=\dfrac{3m^2-6}{m^2+3}\end{matrix}\right.\)

\(\left(x+y\right)\cdot\left(m^2+3\right)+8=0\)

=>\(\dfrac{5m+3m^2-6}{m^2+3}\cdot\left(m^2+3\right)+8=0\)

=>\(3m^2+5m-6+8=0\)

=>\(3m^2+5m+2=0\)

=>(m+1)(3m+2)=0

=>\(\left[{}\begin{matrix}m=-1\\m=-\dfrac{2}{3}\end{matrix}\right.\)

1D

2D

3C

4D

5C

6A

7D

8B

9B

10D

11C

12D

13C

14D

15A

16A

17D

18D

19A

20C

21C

22D

23C

5 tháng 2 2021

undefined