Tìm số tự nhiên n có 2 chữ số biết rằng 2 số 2n +1 và 3n +1 đồng thời là số chính phương
#Tích bạn nhanh nhất nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n là số tự nhiên có 2 chữ số thì \(10\le n\le99\)
=>\(21\le2n+1\le199\)
Vì 2n+1 là số chính phương
=>2n+1=(16;25;36;499;64;81;100;121;169)
n=(12;24;40;60;84)
=>3n+1=(37;73;121;181;253)
Mà 3n+1 là số chính phương
=>3n+1=121
=>n=40
Ta có: n là số tự nhiên có 2 chữ số
=> 10 \(\le\) n \(\le\) 99
=> 21 \(\le\) 2n+1 \(\le\) 199
Mà 2n+1 là số chính phương nên
2n+1 \(\in\) {16;25;36;49;64;81;100;121;169}
=> n \(\in\) {12;24;40;60;84}
=> 3n+1 \(\in\) {37;73;121;181;253}
Mà 3n+1 là số chính phương nên 3n+1=121
=> n=40
10 ≤ n ≤ 99
<=> 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên 2n+1∈ {25;49;81;121;169}
<=> n ∈{12;24;40;60;84}
<=> 3n+1∈{37;73;121;181;253}
<=> n=40
Để giải bài này ta dùng phương pháp chặn em nhé.
Vì n là số tự nhiên có hai chữ số nên 10 ≤ n ≤ 99
⇒ 3 \(\times\) 10 - 2 ≤ 3n - 2 ≤ 3 \(\times\) 99 - 2
⇒ 28 ≤ 3n - 2 ≤ 295
Vì 3n - 2; 2n - 1 đều là số chính phương nên ta có:
3n - 2 = m2
2n - 1 = k2 ( k, m \(\in\) N)
Trừ vế với vế ta có n - 1 = m2 - k2 ⇒ 2(n-1) = 2(m2 - k2)
⇒2n - 1 - 1 = 2m2 - 2k2
⇒ k2 - 1 = 2m2 - 2k2
⇒ 3k2 = 2m2 + 1
⇒ k2 = (2m2 + 1)/3
28 ≤ 3n - 2 ≤ 295
28 ≤ m2 ≤ 295
⇒ 6 ≤ m ≤ 17
2m2 + 1 ⋮ 3 ⇒ m2 không chia hết cho 3
⇒ m \(\in\) { 7; 8; 10; 11; 13; 14; 16; 17}
Với m = 7 ⇒ k2 = ( 2.49 + 1)/3 = 33 (loại)
m = 8 ⇒ k2 = (2.64 +1)/3 = 43 (loại)
m = 10 ⇒ k2 = (2.100 +1)/3 = 67 (loại)
m = 11 ⇒ k2 = ( 2. 121 +1)/3 = 81 (thỏa mãn)
m = 13 ⇒ k2 = ( 2.169 + 1)/3 =113 (loại)
m = 14 ⇒ k2 = (2. 196 + 1)/3 = 131 (loại)
m = 16 ⇒ k2 = ( 2.256 +1)/3 = 171 (loại)
m = 17 ⇒ k2 = (2.289 +1)/3 = 193 (loại)
Vậy m = 11 ⇒ 3n - 2 = 112 = 121 ⇒ 3n = 121 + 2 = 123
⇒ n = 123 : 3 = 41
Kết luận n = 41
a) Một số tự nhiên chẵn có dạng 2k (k(N), khi đó (2k)2 = 4k2 là số chia hết cho 4 còn số tự nhiên lẻ có dạng 2k+1 (k(N) ,
Khi đó (2k+1)2 = 4k2+ 4k +1 là số chia cho 4 dư 1. Như vậy một số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1 , do đó không thể viết đựơc dưới dạng 4n+2 hoặc 4n+3(n(N)
b) Một số tự nhiên chỉ có thể viết dưới dạng 3k hoặc 3k± 1 (k( N)
khi đó bình phương của nó có dạng (3k)2 =9k2 là số chia hết cho 3 ,hoặc có dạng (3k± 1) 2 = 9k2 ± 6k +1 là số khi chia cho 3 thì dư 1.
Như vậy một số chính phương không thể viết dưới dạng 3n+2(n(N) ĐPCM.
n là số tự nhiên có 2 chữ số nên 10< hoặc = n <100 do đó 21< hoac bang 2n+1<201
2n+1 là số chính phương lẻ nên 2n+1 chỉ có thể nhận 1 trong các giá trị 25;49;81;121;169
suy ra n chỉ có thể nhận 1 trong các giá trị 12;24;40;60;84
suy ra 3n+1 chỉ có thể nhận 1 trong các giá trị 37;73;121;181;253
Trong các số trên chỉ có số 121=11^2 là 1 số chính phương
Vậy số n tự nhiên có 2 chữ số cần tìm là 40