K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1 2022

Hàm xác định trên khoảng đã cho khi và chỉ khi:

\(x^2-2x+m-3=0\) vô nghiệm trên khoảng đã cho

\(\Leftrightarrow x^2-2x-3=-m\) vô nghiệm trên \(\left(-\infty;-2\right)\)

Xét hàm \(f\left(x\right)=x^2-2x-3\) khi \(x< -2\)

\(a=1>0;-\dfrac{b}{2a}=1>-2\)

\(\Rightarrow f\left(x\right)\) nghịch biến khi \(x< -2\)

\(\Rightarrow f\left(x\right)>f\left(-2\right)=5\)

\(\Rightarrow\) Pt vô nghiệm khi \(-m\le5\Rightarrow m\ge-5\)

NV
22 tháng 12 2022

Hàm xác định trên \(\left[2;3\right]\) khi và chỉ khi:

\(x^2-2x-m>0;\forall x\in\left[2;3\right]\)

\(\Rightarrow x^2-2x>m;\forall x\in\left[2;3\right]\)

\(\Rightarrow m< \min\limits_{\left[2;3\right]}\left(x^2-2x\right)\)

Xét hàm \(f\left(x\right)=x^2-2x\) trên \(\left[2;3\right]\)

\(-\dfrac{b}{2a}=1\notin\left[2;3\right]\)

\(f\left(2\right)=0\) ; \(f\left(3\right)=3\)

\(\Rightarrow\min\limits_{\left[2;3\right]}\left(x^2-2x\right)=0\)

\(\Rightarrow m< 0\)

22 tháng 12 2022

Em cảm ơn anh ạ! 

Anh giúp em câu này nữa nhá anh em ra -4a^2 

https://hoc24.vn/cau-hoi/cho-hinh-thang-vuong-abcd-duong-cao-ab-2a-day-lon-bc-3a-day-nho-ad-2a-tinh-tich-vo-huong-vecto-ab-vecto-cd.7396640395536

21 tháng 6 2021

undefined

Bài 1: 

a) Để hàm số y=(k-2)x+k+3 là hàm số bậc nhất thì \(k\ne2\)

b) Để hàm số y=(k-2)x+k+3 đồng biến trên R thì k-2>0

hay k>2

Bài 2: 

Thay \(x=-\dfrac{1}{2}\) và \(y=\dfrac{2}{3}\) vào (D), ta được:

\(\left(2m-3\right)\cdot\dfrac{-1}{2}-\dfrac{1}{2}=\dfrac{2}{3}\)

\(\Leftrightarrow\left(2m-3\right)\cdot\dfrac{-1}{2}=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)

\(\Leftrightarrow2m-3=\dfrac{7}{6}:\dfrac{-1}{2}=\dfrac{-7}{6}\cdot\dfrac{2}{1}=-\dfrac{14}{6}=-\dfrac{7}{3}\)

\(\Leftrightarrow2m=\dfrac{-7}{3}+3=\dfrac{-7}{3}+\dfrac{9}{3}=\dfrac{2}{3}\)

hay \(m=\dfrac{1}{3}\)

NV
20 tháng 6 2021

\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)

a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)

Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)

TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)

Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m

NV
20 tháng 6 2021

b.

Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x< 0\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)

TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Kết hợp lại ta được: \(m\ge2\)

NV
20 tháng 6 2021

\(y'=3x^2-6mx+3\left(3m-4\right)=3\left[x^2-2mx+3m-4\right]\)

Xét \(f\left(x\right)=x^2-2mx+3m-4\)

\(\Delta'=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\) ;\(\forall m\)

a. Để hàm số đồng biến trên khoảng đã cho

\(\Leftrightarrow x^2-2mx+3m-4\ge0\) ; \(\forall x\le1\)

\(\Leftrightarrow1\le x_1< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}>1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m-4-2m+1\ge0\\2m>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge3\\m>1\end{matrix}\right.\) \(\Rightarrow m\ge3\)

NV
20 tháng 6 2021

b.

Để hàm đồng biến trên khoảng đã cho

\(\Leftrightarrow x^2-2mx+3m-4\ge0\) ; \(\forall x\ge2\)

\(\Leftrightarrow x_1< x_2\le2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m-4-4m+4\ge0\\2m< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\m< 2\end{matrix}\right.\) \(\Rightarrow m\le0\)

25 tháng 12 2023

 Xét parabol \(\left(C_m\right):y=-2x^2-\left(2m-1\right)x+6-3m\), ta có \(\Delta=\left[-\left(2m-1\right)\right]^2-4\left(-2\right)\left(6+3m\right)=4m^2+20m+49\)

  Gọi \(I_m\) là đỉnh của \(\left(C_m\right)\) thì \(I_m\left(\dfrac{-2m+1}{4};\dfrac{4m^2+20m+49}{8}\right)\)

  Để hàm số đã cho nghịch biến trong khoảng \(\left(-2;+\infty\right)\) thì \(\dfrac{-2m+1}{4}=-2\Leftrightarrow m=\dfrac{9}{2}\)

 

25 tháng 12 2023

Tao đéo biết thằng Nguyễn Huy Hung nha ☹

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoànhBài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các...
Đọc tiếp

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành

Bài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)

Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về cùng một phía đối với trục tung

Bài 4: Cho hàm số \(y=-x^3+2(m-1)x^2-(m^2-3m+2)x-4\)

(m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung

Bài 5: Cho hàm số \(y=-x^3+3x^2+3(m^2-1)x-3m^2-1\) (1). Tìm m để hàm số (1) có cực đại, cực tiểu, đồng thời các điểm cực đại và cực tiểu cùng với gốc tọa độ O tạo thành một tam giác vuông tại O

 

5
NV
18 tháng 7 2021

1.

Đồ thị hàm bậc 3 có 2 điểm cực trị nằm về 2 phía trục hoành khi và chỉ khi \(f\left(x\right)=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow x^3+3x^2+mx+m-2=0\) có 3 nghiệm pb

\(\Leftrightarrow x^3+3x^2-2+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-2\right)+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+m-2=0\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}1-2+m-2\ne0\\\Delta'=1-\left(m-2\right)>0\end{matrix}\right.\) 

\(\Leftrightarrow m< 3\)

NV
18 tháng 7 2021

2.

Pt hoành độ giao điểm:

\(\dfrac{2x-2}{x+1}=2x+m\)

\(\Rightarrow2x-2=\left(2x+m\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2+mx+m+2=0\) (1)

d cắt (C) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb

\(\Rightarrow\Delta=m^2-8\left(m+2\right)>0\Rightarrow\left[{}\begin{matrix}m>4+4\sqrt{2}\\m< 4-4\sqrt{2}\end{matrix}\right.\)

Khi đó, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{m}{2}\\x_Ax_B=\dfrac{m+2}{2}\end{matrix}\right.\)

\(y_A=2x_A+m\) ; \(y_B=2x_B+m\)

\(\Rightarrow AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(2x_A-2x_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2=1\)

\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=1\)

\(\Leftrightarrow\left(-\dfrac{m}{2}\right)^2-4\left(\dfrac{m+2}{2}\right)=1\)

\(\Leftrightarrow m^2-8m-20=0\Rightarrow\left[{}\begin{matrix}m=10\\m=-2\end{matrix}\right.\)