K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

Đề là như thế này phải không bạn \(2x^4+3x^2y^2+y^4+y^2\)

Giải 

       \(2x^4+3x^2y^2+y^4+y^2\)

\(=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=\left(x^2+y^2\right)+\left(2x^2+y^2\right)+y^2\)\(=\left(x^2+y^2\right)+\left(x^2+x^2+y^2\right)+y^2\)(*)

Thay x+y=1 vào (*), ta có :

\(=1+1+x^2+y^2\)

\(=1+1+1=3\)

\(N=3x^4+3x^2y^2+x^2y^2+y^4+2y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+y^2\right)+2y^2\)

\(=3x^2+3y^2=3\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Biểu thức mà muốn tính giá trị thì phải có điều kiện gì của $y$ chứ em?

\(\left(y-1\right)\left(y-2\right)\left(y^2+y+1\right)\left(y^2+2y+4\right)\)

\(=\left(y^3-1\right)\left(y^3-8\right)\)

\(=y^6-9y^3+8\)

12 tháng 7

1; \(x^2\) + 3\(x^2\) + 3\(x\) = 4\(x^2\) + 3\(x\) (1) 

Thay \(x=99\) vào (1) ta có:

4.992 + 3.99 = 4.9801 + 297 = 39204 + 297 = 39501

 

 

27 tháng 3 2016

\(N=2x^4+3x^2y^2+y^4+y^2\)

\(N=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)

\(N=2x^2x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)

\(N=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2+1\right)\)

Thay x2+y2=1 vào ta được:

\(N=2x^2.1+y^2.\left(1+1\right)=2x^2+2y^2=2\left(x^2+y^2\right)=2.1=2\)

Vậy N=2
 

1 tháng 6 2015

Đặt A=3.(x+y)^2/3(x-y)^2

A=(x+y)^2/(x-y)^2

Xét tử (x+y)^2=xy+xy+x^2+y^2

                    =1/2+1/2+x^2+y^2

                  =1+x^2+y^2

Xét mẫu (x-y)^2=-x.y-x.y+x^2-y^2

                     =-1/2+-1/2+x^2-y^2

                     =-1+x^2-y^2

Vậy nế tính ra thì A=x^2/x^2

                         A=1

ko biết có đúng ko nhưng em cứ giải thôi à

28 tháng 10 2016

Cách 1: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\Rightarrow\begin{cases}x=2.k\\y=3.k\\z=4.k\end{cases}\)

Ta có: \(A=\frac{x+2y+3z}{3x+2y+z}=\frac{2.k+2.3.k+3.4.k}{3.2.k+2.3.k+4.k}=\frac{2.k+6.k+12.k}{6.k+6.k+4.k}=\frac{20.k}{16.k}=\frac{5}{4}\)

Cách 2: Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{3x}{6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y+3z}{2+6+12}=\frac{x+2y+3z}{20}\left(1\right)\)

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{3x}{6}=\frac{2y}{6}=\frac{3x+2y+z}{6+6+4}=\frac{3x+2y+z}{16}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x+2y+3z}{20}=\frac{3x+2y+z}{16}\)

\(\Rightarrow A=\frac{x+2y+3z}{3x+2y+z}=\frac{20}{16}=\frac{5}{4}\)

20 tháng 8 2016

b)B=27y^3-27y^2x+9yx^2-x^3 
= 27 . (1/3x)^3 - 27.(1/3x)².x + 9.1/3.x.x^2 - x^3 
= x^3 - 3x^3 + 3x^3 - x^3 
= 0

d) D=50y^2+x(x-2y)+14y(x-y) 

=50y^2 +x^2 -2xy +14xy -14y^2 

=36y^2 +x^2 +12xy 

=(6y + x)^2 

=81