Chứng tỏ rằng B=1+5+52+...+57+58 chia hết cho 31.giúp em để em Ôn thi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1+5+5^2+...+5^6+5^7+5^8\)
\(=31+...+5^6\cdot31\)
\(=31\cdot\left(1+...+5^6\right)⋮31\)
\(B=5+5^2+5^3+...+5^{88}+5^{89}+5^{90}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{88}+5^{89}+5^{90}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{88}\left(1+5+5^2\right)\)
\(=31\left(5+5^4+...+5^{88}\right)⋮31\)
Đặt \(A=1+5+5^2+5^3+...+5^{402}+5^{403}+5^{404}\)
\(\Rightarrow A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{399}+5^{400}+5^{401}\right)+\left(5^{402}+5^{403}+5^{404}\right)\)
\(\Rightarrow A=31.1+31.5^3+...+31.5^{402}\)
\(\Rightarrow A=31\left(1+5^3+5^6+...+5^{402}\right)\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
\(\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\\ =31+5^3.\left(1+5+5^2\right)+...+5^{402}.\left(1+5+5^2\right)\\ =31+5^3.31+...+5^{402}.31\\ =31.\left(1+5^3+...+5^{402}\right)⋮31\left(DPCM\right)\)
a, Ta có:
2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
= 2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100
= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4
= 2 . 31 + 2 6 . 31 + . . . + 2 96 . 31
= 2 + 2 6 + . . . + 2 96 . 31 chia hết cho 31
b, Ta có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5
= 5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6
= ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6 chia hết cho 6
Ta lại có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150 (có đúng 25 nhóm)
= [ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... + [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]
= [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... + [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]
= ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... + ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )
= ( 5 + 5 2 + 5 3 ) . 126 + ( 5 7 + 5 8 + 5 9 ) . 126 + ... + ( 5 145 + 5 146 + 5 147 ) . 126
= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... + ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.
Vậy 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
\(A=1+5+5^2+5^3+...+5^{59}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31\left(1+5^3+...+5^{57}\right)\)chia hết cho \(31\).
\(A=1+5+5^2+5^3+...+5^{59}\)
\(5A=5+5^2+5^3+5^4+...+5^{60}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{60}\right)-\left(1+5+5^2+5^3+...+5^{59}\right)\)
\(4A=5^{60}-1\)
\(A=\frac{5^{60}-1}{4}< \frac{5^{60}}{4}\).
1) C = 5 + 52 + 53 + 54 + ... + 520
= (5 + 52) + (53 + 54) + ... +(519 + 520)
= (5 + 52) + 52(5 + 52) + .... + 518(5 + 52)
= (5 + 52)(1 + 52 + ... + 518)
= 26(1 + 52 + ... + 518)
= 13.2.(1 + 52 + ... + 518) \(⋮\)13 (ĐPCM)
2) a) A = 24 + 25 + 26 + 27 + 28 + 29
= (24 + 25) + (26 + 27) + (28 + 29)
= 24(1 + 2) + 26(1 + 2) + 28(1 + 2)
= (1 + 2)(24 + 26 + 28)
= 3(24 + 26 + 28) \(⋮3\)
b) B = 317 + 318 + 319 + 320 + 321 + 322
= (317 + 318 + 319) + (320) + 321 + 322)
= 317(1 + 3 + 32) + 320(1 + 3 + 32)
= (1 + 3 + 32)(317 + 320)
= 13(317 + 320) \(⋮\)13
Bài 1:
C = 5+52 +53+.....+520
=(5+52+53+54)+.....+(517+518+519+520)
=5.(1+5+52+53)+.....+517(1+5+52+53)
=5.156+....+517.156
=156.(5+...+517)=13.12.(5+....+517) chia hết cho 13
Bài 2:
A=24+25+26+27+28+29
=(24+25)+(26+27)+(28+29)
=24(1+2)+26(1+2)+28(1+2)
=24.3+26.3+28.3
=3.(24+26+28) chia hết cho 3
b)
B=317+318+319+320+321+322
=(317+318+319)+(320+321+322)
=317(1+3+32)+320(1+3+32)
=317.13+320.13
=13.(317+320)chia hết cho 13
#CừU
\(B=\left(1+5+5^2\right)+...+5^6\left(1+5+5^2\right)=31\left(1+...+5^6\right)⋮31\)