cho tam giác ABC, có AB = AC, kẻ bE vuông góc với AC, CD vuông góc với AB. Gọi O là giao điểm của BE và CD. CMR : a) tam giác ABC = tam giác AEB, b) AO là phân giác của BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔADC vuông tại D có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔAEB=ΔADC
a/ Xét tg vuông ADC và tg vuông AEB có
AB=AC
\(\widehat{A}\) chung
\(\Rightarrow\Delta ADC=\Delta AEB\) (Hai tg vuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau)
b/
Xét tg vuông ADI và tg vuông AEI có
AI chung
AD=AE (\(\Delta ADC=\Delta AEB\) )
\(\Rightarrow\Delta ADI=\Delta AEI\) (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\) nên AI là phân giác của \(\widehat{BAC}\)
hình như sai đề thì phải!!!
756765785676578887876857
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
a: Xét ΔAEB vuông tại E và ΔADC vuông tại D có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔAEB=ΔADC
vẽ hình ra nửa chứ