GIÚP MÌNH VỚI, MÌNH CẦN GẤP (*^-^*)
Tìm số nguyên x,y thỏa mãn: xy-2x-3y+1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta thấy rằng nếu có một trong hai số x,y chẵn thì xy chẵn còn 2x+2y+1 là lẻ, do đó 2x+2y+1 không thể chia hết cho xy.
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
x+xy = 3-y
x(1+y) =3 - y => x =\(\frac{3-y}{1+y}\)
nếu y = 1 thi x = 1
y = 2 thì x = 1/3 (loại)
y = 3 => x = 0
y = -2 => x = -5
y = -3 => x = -3
Ta có : x + y + xy + 1 = 4
=> x.(y+1) + (y+1) = 4
=> (x+1).(y+1) = 4
Vì x,y nguyên nên ta xét các hệ phương trình :
x + 1 = 4 và y + 1 = 1 => x = 3, y = 0
x + 1 = -4 và y + 1 = -1 => x = -5, y = -2
x + 1 = 1 và y +1 = 4 => x = 0, y = 3
x + 1 = -1, y + 1 = -4 => x = -2, y = -5
x + 1 = 2, y + 1 = 2 => x = 1, y = 1
x + 1 = -2, y + 1 = -2 => x = -3, y = -3
Vậy (x,y) = .......( tự điền nốt nha) =) =)
\(\left(2x+1\right)\left(y-1\right)=-7\\ \Rightarrow2x+1;y-1\in U_{\left(-7\right)}=\left\{-7;-1;1;7\right\}\)
\(TH1\) | \(TH2\) | \(TH3\) | \(TH4\) | |
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(y-1\) | \(-7\) | \(7\) | \(-1\) | \(1\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
\(y\) | \(-6\) | \(8\) | \(0\) | \(2\) |
Bài 2:
Ta có: (x-3)(x+4)>0
=>x>3 hoặc x<-4
Bài 3:
a: \(5S=5-5^2+...+5^{99}-5^{100}\)
\(\Leftrightarrow6S=1-5^{100}\)
hay \(S=\dfrac{1-5^{100}}{6}\)
\(xy-2x-3y+1=0\) \(\left(\text{*}\right)\)
\(\Leftrightarrow\) \(xy-3y=2x-1\)
\(\Leftrightarrow\) \(\left(x-3\right)y=2x-1\)
\(\Leftrightarrow\) \(y=\frac{2x-1}{x-3}\)
\(\Leftrightarrow\) \(y=\frac{2x-6+5}{x-3}\)
\(\Leftrightarrow\) \(y=2+\frac{5}{x-3}\)
Vì \(y\in Z\) (theo giả thiết) nên \(\frac{5}{x-3}\) phải là số nguyên hay \(5\) phải chia hết cho \(x-3\)
\(\Leftrightarrow\) \(x-3\in\left\{-5;-1;1;5\right\}\)
Khi đó, xét \(x-3\) với \(4\) trường hợp trên, ta có:
\(\text{+) }\) Với \(x-3=-5\) thì \(x=-2\) \(\Rightarrow\) \(y=1\)
\(\text{+) }\) Với \(x-3=-1\) thì \(x=2\) \(\Rightarrow\) \(y=-3\)
\(\text{+) }\) Với \(x-3=1\) thì \(x=4\) \(\Rightarrow\) \(y=7\)
\(\text{+) }\) Với \(x-3=5\) thì \(x=8\) \(\Rightarrow\) \(y=3\)
Vây, nghiệm nguyên của phương trình \(\left(\text{*}\right)\) là \(\left(x;y\right)=\left\{\left(-2;1\right),\left(2;-3\right),\left(4;7\right),\left(8;3\right)\right\}\)