cho A= 1+2015+2015^2+2015^3+...+2015^98+2015^99.chứng tỏ 2014A là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2015+2015^2+....+2015^9\)
\(2015A=2015+2015^2+2015^3+....+2015^{10}\)
\(2015A-A=\left(2015+2015^2+2015^3+...+2015^{10}\right)-\left(1+2015+2015^2+....+2015^9\right)\)
\(2014A=2015^{10}-1\)
=>\(2014A+1=2015^{10}-1+1=2015^{10}=...5\) (vì những số tự nhiên có chữ số tận cùng=5 khi nâng lên lũy thừa bất kì (khác 0) vẫn giữ nguyên chữ số tận cùng của nó)
Mà chữ số tận cùng của 1 SCP chỉ có thể E {0;1;4;5;6;9}
=>2014A+1 là 1 SCP (đpcm)
Ta có:\(B=1+2015+2015^2+...+2015^{99}\)
=>\(2015B=2015+2015^2+2015^3+...+2015^{100}\)
=>\(2015B-B=2014B=2015^{100}-1\)
=>\(2014B+1=2015^{100}=\left(2015^{50}\right)^2\)
Vì 2014B + 1 là bình phương của một số tự nhiên
Vậy 2014B + 1 là số chính phương
Ta có : \(B=1+2015+2015^2+...+2015^{99}\)
\(\Rightarrow2015B=2015+2015^2+2015^3+...+2015^{100}\)
\(\Rightarrow2015B-B=2014B=2015^{100}-1\)
\(\Rightarrow2014B+1=2015^{100}=\left(2015^{50}\right)^2\)
Vì : \(2014B+1\) là bình phương của một số tự nhiên
Vậy \(2014B+1\) là số chính phương
A=1+2015+20152+20153+......+201599
=>2015A=2015+20152+20153+20154+......+2015100
=>2015A-A=(2015+20152+20153+20154+.....+2015100)-(1+2015+20152+20153+....+201599)
=>2014A=2015100-1
=>2014A+1=2015100-1+1=2015100
Công thức: các số tự nhiên tận cùng=0;1;5;6 khi nâng lên lũy thừa bất kì (khác 0) vẫn giữ nguyên chữ số tận cùng của nó
Ta có:2015 tận cùng là 5
=>2015100 có chữ số tận cùng là 5
Vì chữ số tận cùng của 1 số chính phương chỉ có thể \(\in\left\{1;4;5;6;9\right\}\)
=>2015100 là số chính phương
=>2014A+1 là số chính phương (đpcm)
2015A=2015+2015^2+2015^3+...+2015^100
- A=1+2015+2015^2+...+2015^99
2014A=2015^100-1=>2014A+1=2015^100=2015^(50.2)=(2015^50)^2 là một số chính phương(ĐPCM)
A=1+2015+20152+...+201599
=> 2015A=2015+20152+20153+...+2015100
=> 2015A-A=(2015+20152+20153+...+2015100)-(1+2015+20152+...+201599)
2014A=2015100-1
=> 2014A+1=2015100-1+1=2015100=(20152)50
Vì 2015100 bằng bình phương của 1 số tự nhiên
=> 2014A+1 là số chính phương
\(A=1+2015+2015^2+...+2015^{99}\)
\(\Leftrightarrow2015A=2015+2015^2+2015^3+....+2015^{100}\)
\(\Leftrightarrow2015A-A=\left(2015+2015^2+....+2015^{100}\right)-\left(1+2015+2015^2+....+2015^{99}\right)\)
\(\Leftrightarrow2014A=2015^{100}-1\)
=> 2014A+1=\(2015^{100}=\left(2015^{50}\right)^2\)
=> 2014A+1 là số chính phương (đpcm)
Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)
\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)
\(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)
Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)
=>P không phải là số chính phương
Ta thấy S có các số hạng cách đều 2 đơn vị
=> S có: (2017 - 1) : 2 +1 = 1009 ( số hạng)
=> S = (2017 + 1) x 1009 : 2 = (2018 : 2) x 1009= 1009 x 1009 = 10092
Vì 1009 là số nguyên => 10092 là số chính phương => S là số chính phương(điều phải chứng minh)