tính tổng :1/6+1/66+1/176+1/336+...+1/496.501
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/6+1/66+1/176+....+1/496.501
=1/1.6+1/6.11+1/11.16+....+1/496.501
=(1/5).(5/1.6+5/6.11+5/11.16+....+5/496.501)
=(1/5).(1-1/6+1/6-1/11+1/11-1/16+...+1/496-1/501)
=(1/5).(1-1/501)
=1/5 . 500/501
=100/501
Ta có: 1/6+1/66+1/176+1/336+...+1/496.501
=1/1.6+1/6.11+1/11.16+1/16.21+...+1/496.501
=1/5.(5/1.6+5/6.11+5/11.16+5/16.21+...+5/496.501)
=1/5.(1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+...+1/496-1/501)
=1/5.(1-1/501)
=1/5.500/501
=100/501
\(B=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
=> \(B=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{496.501}\right)\)
=> \(B=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\right)\)
=> \(B=\frac{1}{5}.\left(1-\frac{1}{501}\right)=\frac{1}{5}.\frac{500}{501}=\frac{100}{501}\)
Ta thay:1/6=1.6; 1/66=6.11; 1/176= 11.16; 1/336= 16.21;...........
=1/6+1/66+1/176+1/376+.....+1/496.501
=1/5.(1-1/501)
=1/5=500/501=100/501
Vay y= 100/501
\(y=\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+...+\frac{1}{496.501}\)
\(\Rightarrow y=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.501}\)
\(\Rightarrow5y=5.(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.501}\)
\(\Rightarrow5y=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{496.501}\)
\(\Rightarrow5y=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{496}-\frac{1}{501}\)
\(\Rightarrow5y=1-\frac{1}{501}\)
\(\Rightarrow5y=\frac{501}{501}-\frac{1}{501}\)
\(\Rightarrow5y=\frac{500}{501}\)
\(\Rightarrow y=\frac{500}{501}\div5\)
\(\Rightarrow y=\frac{500}{501}.\frac{1}{5}\)
\(\Rightarrow y=\frac{100}{501}\)
Quy luật:
6 = 1.6
66 = 6.11
176 = 11.16
336 = 16.21
...
1/(1.6) + 1/(6.11) + 1/(11.16) + … + 1/[(5n-4)(5n+1)]
=(1/1 – 1/6)/5 + (1/6 – 1/11)/5 + (1/11 – 1/16)/5 +…+ [1/(5n-4) – 1/(5n+1)]/5
=[1/1 – 1/6 + 1/6 – 1/11 + 1/11 – 1/16 + … + 1/(5n-4) – 1/(5n+1)]/5
=[1 – 1/(5n+1)]/5
Tổng 100 số đầu =[1 – 1/(5.100+1)]/5 = 100/501
1/1.6 + 1/6.11+ 1/11.16+ ....
số thứ 100 có dạng 1/(496.501)
do đó tổng trên bằng 1/5( 1/1- 1/501) = 100/ 501
hc tốt
\(5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{496.501}\)
\(5B=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+\frac{21-16}{16.21}+...+\frac{501-496}{496.501}\)
\(5B=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
\(5B=1-\frac{1}{501}=\frac{500}{501}\Rightarrow B=\frac{100}{501}\)
1A = 1/6 . (1 - 1/501) = 1/6 . 500/501 => A = 500/501.6=500/3006
=1/1*6+1/6*11+1/11*16+1/16*31+...+1/496+1/496*501
=1/5*(1-1/6*1/6-1/11+1/11-1/16+1/16-1/31+...+1/496-1/501)
=1/5*(1-1/501)
=1/5*500/501
=100/101
Vậy A=100/101
Tính: S=1/6+1/66+1/176+1/336+...
1/6= 1/1x6; 1/66= 1/6 x11; đại loại thế
Số hạng thứ 100 là: 1 +5 x(100-1)=496.
Phân số thứ 100 là:1/496 x501
Dãy đầy đủ là: S=1/1x6+1/6x11+1/11x 16+...+1/496x501
Nhân 2 vế S với 5
Sx5 =5/1x6+5/6x11+5/11x 16+...+5/496x501= 1/1-1/501=500/501
S= 100/501
Bài 1: A= 1x2+2x3+3x4+...+98x99 A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97) = 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97) = 98x99x100. Bài 2: Tính: S=1/6+1/66+1/176+1/336+... 1/6= 1/1x6; 1/66= 1/6 x11; đại loại thế Số hạng thứ 100 là: 1 +5 x(100-1)=496. Phân số thứ 100 là:1/496 x501 Dãy đầy đủ là: S=1/1x6+1/6x11+1/11x 16+...+1/496x501 Nhân 2 vế S với 5 Sx5 =5/1x6+5/6x11+5/11x 16+...+5/496x501= 1/1-1/501=500/501 S= 100/501