K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

S=\(\left(1+\frac{1}{2}+......+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{2002}\right)\)

=\(\left(1+\frac{1}{2}+.........+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+.........+\frac{1}{1001}\right)\)

=\(\frac{1}{1002}+\frac{1}{1003}+...........+\frac{1}{2002}=P\)

\(\Rightarrow S-P=0\)

9 tháng 10 2015

\(A=\left(\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{2002-1}{2002!}\right)+\frac{1}{2002!}\)

\(A=\left(\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{2002}{2002!}-\frac{1}{2002!}\right)+\frac{1}{2002!}\)

\(A=\left(\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{2001!}-\frac{1}{2002!}\right)+\frac{1}{2002!}\)

\(A=\frac{1}{1!}-\frac{1}{2002!}+\frac{1}{2002!}=1\)

 

14 tháng 3 2019

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}-1-\frac{1}{2}-...-\frac{1}{1001}\)

\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2002}\)

28 tháng 10 2019

Xem bài tại link này nhé!  Bài làm đúng đã đc OLM chọn.

Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath

28 tháng 10 2019

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+......+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{1001}\right)\)

\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+.....+\frac{1}{2002}\)

Chúc em học tốt nhé!