K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2015

\(A=\left(\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{2002-1}{2002!}\right)+\frac{1}{2002!}\)

\(A=\left(\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{2002}{2002!}-\frac{1}{2002!}\right)+\frac{1}{2002!}\)

\(A=\left(\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{2001!}-\frac{1}{2002!}\right)+\frac{1}{2002!}\)

\(A=\frac{1}{1!}-\frac{1}{2002!}+\frac{1}{2002!}=1\)

 

1 tháng 10 2016

Xét với n là số tự nhiên không nhỏ hơn 1

Ta có : \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng điều trên ta có 

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}\)

\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)

\(=1-\frac{1}{\sqrt{2002}}< 1-\frac{1}{\sqrt{2025}}=1-\frac{1}{45}=\frac{44}{45}\)

1 tháng 10 2016

ta chứng minh công thức tổng quát sau 

\(\frac{1}{\left[n+1\right]\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left[n+1\right]}\left[\sqrt{n+1}+\sqrt{n}\right]}\)

=\(\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left[n+1\right]}\left[n+1-n\right]}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left[n+1\right]}}\)

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

ta có \(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

........ 

\(\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}=\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)

=> \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+..+\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}\)

=\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)

=\(1-\frac{1}{\sqrt{2002}}< \frac{44}{45}\)

16 tháng 11 2017

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x^2-x+2001}=a\\\sqrt[3]{3x^2-7x+2002}=b\\\sqrt[3]{6x-2003}=c\end{matrix}\right.\)

\(\Rightarrow a^3-b^3-c^3=2002\) từ đây ta có:

\(a-b-c=\sqrt[3]{a^3-b^3-c^3}\)

\(\Leftrightarrow\left(a-b-c\right)^3=\sqrt[3]{a^3-b^3-c^3}\)

\(\Leftrightarrow\left(a-c\right)\left(a-b\right)\left(b+c\right)=0\)

Tự làm nốt nhé

15 tháng 11 2017

Xem lại đề nhé bạn: \(\sqrt[3]{6x-2003}\) mới đúng chứ nhỉ?

22 tháng 5 2015

mình giải bằng casio ra x = 0,767591877

13 tháng 12 2018

sao bạn lại có chữ hiệp sĩ ở bên cạnh tên vậy?

sao vậy bạn

k mk nha

27 tháng 10 2015

Cộng thêm 1 đơn vị vào         

30 tháng 1 2023

(x+2004-2004+4)/2000+(x-2004+2004+3)/2001=(x-2004+2004+2)/2002+(x-2004+2004+1)/2003

hay (x+2004)/2000-1+(x+2004)/2001-1=(x+2004)/2002-1+(x+2004)/2003-1

Hay (x+2004)(1/2000+1/2001)=(x+2004)(1/2002+1/2003)

Hay (x+2004)(1/2000+1/2001-1/2002-1/2003)=0

hay x+2004=0

Hay x=-2004

 

28 tháng 2 2017

Đặt \(\sqrt[3]{3x^2-x+2001}=a;-\sqrt[3]{3x^2-7x+2002}=b;-\sqrt[3]{6x-2003}=c\)

Thì ta có được hệ: \(\hept{\begin{cases}a+b+c=\sqrt[3]{2002}\\a^3+b^3+c^3=2002\end{cases}}\)

\(\Leftrightarrow\left(a+b+c\right)^3=a^3+b^3+c^3\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=a^3+b^3+c^3\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Với  a = - b thì

\(\sqrt[3]{3x^2-x+2001}=\sqrt[3]{3x^2-7x+2002}\)

\(\Leftrightarrow3x^2-x+2001=3x^2-7x+2002\)

\(\Leftrightarrow6x=1\)

\(\Leftrightarrow x=\frac{1}{6}\)

Tương tự cho 2 trường hợp còn lại 

28 tháng 2 2017

\(\Leftrightarrow\)x=\(\frac{1}{6}\)

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
28 tháng 7 2017

\(x^4+\sqrt{x^2+2002}=2002\)

Đặt \(\sqrt{x^2+2002}=a^2>0\)

\(\Rightarrow\hept{\begin{cases}x^4+a^2=2002\left(1\right)\\a^4-x^2=2002\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được

\(x^4-a^4+x^2+a^2=0\)

\(\Leftrightarrow\left(x^2+a^2\right)\left(x^2-a^2+1\right)=0\)

\(\Leftrightarrow x^2+1=a^2=\sqrt{x^2+2002}\)

\(\Leftrightarrow x^4+2x^2+1=x^2+2002\)

\(\Leftrightarrow x^4+x^2-2001=0\)

Tới đây thì đơn giản rồi

28 tháng 7 2017

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=\left(x+3\right)^2\left(x^2+1\right)\)

\(\Leftrightarrow x^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{8}\\x=-\sqrt{8}\end{cases}}\)