a) \(N=(3x-2y)+(5x-y)-(7y-2x) \) với \(x=y=2021\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(N=3x-2y+5x-y-7y+2x=10x-10y=10\cdot\left(x-y\right)=0\)
\(a,M=12-x+x-73+96+x-23=x+12\\ M=101+12=113\\ b,N=3x-2y+5x-y-7y+2x=10x-10y\\ N=10\cdot2021-10\cdot2021=0\)
a) Ta có: \(M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2\)
\(=\left(x^2y-2x^2y\right)+\left(xy^2+6xy^2\right)-5x^2y^2+x^3\)
\(=x^3-x^2y+7xy^2-5x^2y^2\)
Bậc là 4
Ta có: \(N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2\)
\(=3x^3+\left(xy-2xy\right)+\left(y^2+7y^2\right)-x^2y^2-2\)
\(=3x^2+8y^2-xy-x^2y^2-2\)
Bậc là 4
Ta có: 6x - 2y = 7y - 3x
=> 6x + 3x = 7y + 2y
=> 9x = 9y => x = y
=> x - y = 0
mà x - y = 10 (đb)
=> ko có x; t tm
7x - 2y = 5x - 3y
=> 7x - 5x = -3y + 2y
=> 2x = -y
=> \(\frac{x}{-1}=\frac{y}{2}\) => \(\frac{2x}{-2}=\frac{3y}{6}\)
áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{-2}=\frac{3y}{6}=\frac{2x+3y}{-2+6}=\frac{20}{4}=5\)
=> \(\hept{\begin{cases}\frac{x}{-1}=5\\\frac{y}{2}=5\end{cases}}\) => \(\hept{\begin{cases}x=5.\left(-1\right)=-5\\y=5.2=10\end{cases}}\)
ta có 6x-2y=7y-3x chuyển vế sang
=>9x=9y
do x-y=10 nên x=10+y
=>9(10+y)=9y
=>90+9y=9y
=>90=0y
=>y=0=>x=10
1. 2x = 3y-2
2x+2x = 3y
4x = 3y
=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
=> \(\frac{y}{4}=2\Rightarrow y=8\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
\(=3x-2y+5x-y-7y+2x=-10y=-20210\)
\(N=3x-2y+5x-y-7y+2x=7x-10y\\ N=7\cdot2021-10\cdot2021=\left(-3\right)\cdot2021=-6063\)