anh chị hay bạn nào biết làm cái này ko bảo mình với cảm ơn ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)-7=4\left(-1-x\right)\\ -7x+7=-4-4x\\ -7x-7+4+4x=0\\ -3x-3=0\\ -3\left(x-1\right)=0\\ x-1=0\\ x=1\)
\(a,\left\{{}\begin{matrix}AC=AH\left(GT\right)\\AB.chung\\\widehat{CAB}=\widehat{BAH}\left(=90^0\right)\end{matrix}\right.\Rightarrow\Delta ACB=\Delta AHB\left(c.g.c\right)\)
\(b,\left\{{}\begin{matrix}\widehat{ACB}=\widehat{CBK}\left(so.le.trong\right)\\\widehat{ABC}=\widehat{BCK}\left(so.le.trong\right)\\BC.chung\end{matrix}\right.\Rightarrow\Delta ABC=\Delta KCB\left(g.c.g\right)\Rightarrow AC=BK\left(2.cạnh.tương.ứng\right)\)
\(c,CH=AC+AH=2AC=2AB=BM\\ \left\{{}\begin{matrix}CK//AB\\AB\perp AC\end{matrix}\right.\Rightarrow CK\perp AC\Rightarrow\widehat{ACK}=90^0\\ \left\{{}\begin{matrix}BK//AC\\AC\perp AB\end{matrix}\right.\Rightarrow KB\perp AB\Rightarrow\widehat{ABK}=90^0\\ \left\{{}\begin{matrix}\widehat{ACK}=\widehat{ABK}\left(=90^0\right)\\CH=BM\left(cm.trên\right)\\AC=BK\left(cm.trên\right)\end{matrix}\right.\Rightarrow\Delta CHK=\Delta BMK\left(c.g.c\right)\)
\(d,\Delta CHK=\Delta BMK\left(cm.trên\right)\\ \Rightarrow\widehat{CKH}=\widehat{BKM}\Rightarrow\widehat{CKH}+\widehat{HKB}=\widehat{BKM}+\widehat{HKB}\\ \Rightarrow\widehat{CKB}=\widehat{HKM}\\ \Rightarrow\widehat{BAC}=\widehat{HKM}\left(\Delta ABC=\Delta KCB.nên.\widehat{CKB}=\widehat{BAC}\right)\\ \Rightarrow\widehat{HKM}=90^0\Rightarrow HK\perp KM\)
a) Xét tg ABC có AB=AC(gt)
=> tg ABC cân tại A=> B=C
Cách 1( tính chất Tg cân)
ta lại có AM là đường trung tuyến
tg ABC là tg cân => AM là dg cao => AH vg góc vs BC
Cách 2
Xét tg AHB và tg AHC có AH chung
AB=AC( tg ABC cân]
BH=HC( H td BC)
=> tg AHB=tg AHC ( c.c.c)=> AHB=AHC( hai góc bằng nhau)
Mà BHC= 180 độ=> AHB=AHC=180/2=90 độ
=>AH vg góc với BC
b)Ta có CP vg góc với BC (gt)
MN vg góc với BC( N là chân dg vuông góc)
=> MN// CP( từ vg góc đến song song)
Xét tg MCP và tg PNM có:
IMN=IPC( MN//CP; slt)
MN=CP( gt)
MP chung
=>tg MCP=Tg PMN (c.g.c)
C) Xét tg MIN và tg PIC có
IMN=IPC( MN//PC; slt]
MN=CP( gt)
MNI=IPC( MN//PC; slt)
=> tg MIN=tg PIC ( g.c.g)
=>NI=IC( 2 cạnh t/ứ)