K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

S.4=1.2.3.4+2.3.4.4+...+k(k+1)(k+1).4

=1.2.3(4-0)+2.3.4.(5-1)+...+k(k+1)(k+2)(k+3-k-1)

=1.2.3.4-0+1.2.3.4-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)

=(k-1)k(k+1)(k+2)

=>4S+1=(k-1)k(k+1)(k+2)+1

do (k-1)k(k+1)(k+2) là tích 4 số tự nhiên liên tiếp mà tích 4 số tự nhiên liên tiếp +1 luôn là số chính phương ( cái này bạn tự chứng minh )

=> 4S+1 là số chính phương (đpcm)

13 tháng 3 2017

Ta có: k(k + 1)(k + 2) = 1/4. k(k + 1)(k + 2). 4
= 1/4. k(k + 1)(k + 2). [(k + 3) - (k - 1)]
= 1/4. k(k + 1)(k + 2)(k + 3) - 1/4. k(k + 1)(k + 2)(k - 1)
=> 4S = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1)
= k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
Đây là tổng của 4 số liên tiếp cộng 1 nên luôn là số chính phương.

4 tháng 9 2018

Ta có: k(k + 1)(k + 2) = 1/4. k(k + 1)(k + 2). 4
= \(\frac{1}{4}\). k(k + 1)(k + 2). [(k + 3) - (k - 1)]
= \(\frac{1}{4}\). k(k + 1)(k + 2)(k + 3) - 1/4. k(k + 1)(k + 2)(k - 1)
=> 4S = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1)
= k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
Đây là tổng của 4 số liên tiếp cộng 1 nên luôn là số chính phương.

18 tháng 11 2016

Ta có : \(k\left(k+1\right)\left(k+2\right)=\frac{1}{4}k\left(k+1\right)\left(k+2\right).4\)

\(=\frac{1}{4}k\left(k+1\right)\left(k+2\right)\left[\left(k+3\right)-\left(k-1\right)\right]\)

\(=\frac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\frac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k-1\right)\)

=> 4S = 1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+k(k+1)(k+2)(k+3)-k(k+1)(k+2)(k-1)

\(=k\left(k+1\right)\left(k+2\right)\left(k+3\right)\)

=> \(4S+1=k\left(k+1\right)\left(k+2\right)\left(k+3\right)+1\)

\(=\left[k\left(k+3\right)\right]\left[\left(k+1\right)\left(k+2\right)\right]+1\)
\(=\left[\left(k^2+3k\right)\left(k^2+k+2k+2\right)\right]+1\)

Đặt \(t=k^2+3k\)

\(=>4S+1=t\left(t+2\right)+1\)

= \(t^2+2t+1\)

\(=\left(t+1\right)^2\)

\(=>4S+1=\left(k^2=3k\right)^2=>4S+1\) là số chính phương

26 tháng 11 2015

4S=1*2*3*4+2*3*4(5-1)+......+k*(k+1)(k+2)[(k+3)(k-1)]

tự chứng minh tiếp nhé

3 tháng 8 2023

4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k(k+1)(k+2).4=

=1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]=

=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-...-(k-1)k(k+1)(k+2)+k(k+1)(k+2)(k+3)=

=k(k+1)(k+2)(k+3)=k(k+3)(k+1)(k+2)=

=(k2+3k)(k2+3k+2)=(k2+3k)2+2(k2+3k)

=> 4S+1=(k2+3k)2+2(k2+3k)+1=[(k2+3k)+1]2