K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

chịu tôi lớp 5

22 tháng 12 2021

\(\left(1\right)\Leftrightarrow xy\left(x+y\right)=30\)

Đặt \(\left(x+y\right)=t;xy=z\) ta có hệ PT

\(\hept{\begin{cases}zt=30\left(3\right)\\t+z=11\left(4\right)\end{cases}}\) 

\(\left(3\right)\Leftrightarrow z=\frac{30}{t}\left(t\ne0\right)\)Thay vào (4)

\(\left(4\right)\Leftrightarrow t+\frac{30}{t}=11\Leftrightarrow t^2-11t+30=0\)

\(\Rightarrow t_1=5;t_2=6\)

+ Với \(t=5\Rightarrow x+y=5\Rightarrow z=\frac{30}{t}=6=xy\)Giải hệ \(\hept{\begin{cases}x+y=5\\xy=6\end{cases}}\) để tìm x; y

+ Với \(t=6\) giải tương tự

5 tháng 4 2020

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)

16 tháng 2 2019

\(1,\hept{\begin{cases}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}\left(ĐKXĐ:x\ne0\right)}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{3}{x}-1\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}}\)

\(\Rightarrow\left(\frac{3}{x}-1\right)^2-\frac{5}{x^2}=-1\)

Đặt \(\frac{1}{x}=a\left(a\ne0\right)\)

\(\Rightarrow\left(3a-1\right)^2-5a^2=-1\)

\(\Leftrightarrow9a^2-6a+1-5a^2+1=0\)

\(\Leftrightarrow4a^2-6a+2=0\)

Làm nốt

2, ĐKXĐ \(x\ge1,y\ge0\)

 \(\hept{\begin{cases}xy+x+y=x^2-2y^2\left(1\right)\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\left(2\right)\end{cases}}\)  

Pt (1) <=> \(xy+x+y+y^2=x^2-y^2\) 

<=> \(y\left(x+y\right)+x+y=\left(x-y\right)\left(x+y\right)\) 

<=> \(\left(x+y\right)\left(y+1\right)=\left(x-y\right)\left(x+y\right)\) 

<=> \(\left(x+y\right)\left(2y+1-x\right)=0\) 

Mà \(x\ge1,y\ge0\) => \(x+y>0\) => \(2y+1-x=0\)<=>  \(x=2y+1\) 

Thay x=2y+1 vào (2) 

Đoạn này bn tự giải tiếp nhé 

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

23 tháng 5 2017

a/

\(\hept{\begin{cases}x^2-3x=2y\\y^2-3y=2x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2y=x^2-3x\\y^2-3y=2x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{x^2-3x}{2}\\y^2-3y=2x\left(1\right)\end{cases}}\)

(1) \(\Leftrightarrow\left(\frac{x^2-3x}{2}\right)^2-3\left(\frac{x^2-3x}{2}\right)=2x\)

\(\Leftrightarrow\frac{x^4-6x^3+9x^2}{2}-\frac{3x^2-9x}{2}=2x\)

\(\Leftrightarrow x^4-6x^3+9x^2-3x^2+9x=4x\)

\(\Leftrightarrow x^4-6x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^3-6x^2+6x+5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x^3-6x^2+6x+5=0\left(2\right)\end{cases}}\)

20 tháng 9 2020

Xin làm ý b 

\(\hept{\begin{cases}x^2-xy+y=1\\y^2-xy+x=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-xy=1-y\\y^2-xy=1-x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(1-y\right)=1-y\\y\left(1-x\right)=1-x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy x = y = 1