Tìm giá trị nhỏ nhất của biểu thức: \(\left(x-2\right)\left(x-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=(x-1)(x-2)(x-3)(x-4)=[(x-1)(x-4)][(x-2)(x-3)]=(x^2-5x+4)(x^2-5x+6)$
$=a(a+2)$ (đặt $x^2-5x+4=a$)
$=a^2+2a=(a+1)^2-1=(x^2-5x+5)^2-1\geq -1$
Vậy $S_{\min}=-1$. Giá trị này đạt tại $x^2-5x+5=0$
$\Leftrightarrow x=\frac{5\pm \sqrt{5}}{2}$
\(A=\left(\left|x-1\right|+\left|2020-x\right|\right)+\left(\left|x-2\right|+\left|2019-x\right|\right)+...+\left(\left|x-1009\right|+\left|1010-x\right|\right)\\ A\ge\left|x-1+2020-x\right|+\left|x-2+2019-x\right|+...+\left|x-1009+1010-x\right|\\ A\ge2019+2017+...+1=\dfrac{2020\left[\left(2019-1\right):2+1\right]}{2}=1020100\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(2020-x\right)\ge0\\...\\\left(x-1009\right)\left(1010-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2020\\...\\1009\le x\le1010\end{matrix}\right.\)
\(\Leftrightarrow1009\le x\le1010\)
Có: \(|x-1|\ge0\)
\(|x-2|\ge0\)
.................
\(|x-2019|\ge0\)
=> \(A\ge0\)
Vậy giá trị nhỏ nhất của A là 0
\(P=\left(x^2-3\right)\left(x^2+2\right)\ge-6\forall x\)
Dấu '=' xảy ra khi x=0
\(=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi x=3/2