K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

đặt biểu thức là A ta có:

A= 1.2+2.3+...+100.101

3A=1.2.3+2.3.3+...+100.101.3

3A=1.2.3+2.3.(4-1)+...+100.101.(102-99)

3A=1.2.3+2.3.4-1.2.3+...+100.101.102-99.100.101

3A=100.101.102

A=100.101.102/3

A=343400

duyệt nha

3 tháng 3 2016

A= 1.2+2.3+....+100.101

3A=1.2.3+2.3.3+....+100.101.3

3A=1.2.(3-0)+2.3.(4-1)+.....+100.101.(102-99)

3A=1.2.3-0+2.3.4-1.2.3+..+100.101.102-99.100.101

3A=100.101.102

A=343400

19 tháng 7 2017

= 2-1/1.2 + 3-2/2.3 + 4-3/3.4 + ...... + 3024-3023/3023.3024

= 1-1/2+1/2-1/3+1/3-1/4+.....+1/3023-1/3024

= 1- 1/3024 = 3023/3024

19 tháng 7 2017

=1-1/2+1/2-1/3+1/3-1/4+.......+1/3023-1/3014

=1-1/3024=3023/3024

k cho mình nha

11 tháng 8 2016

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2.\left(1-\frac{1}{100}\right)\)

\(=2.\frac{99}{100}\)

\(=\frac{99}{50}\)

11 tháng 8 2016

\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2.\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(=2.\frac{99}{100}\)

\(=\frac{99}{50}\)

17 tháng 5 2022

A=3/1.2+3/2.3+3/3.4+3/4.5+...+3/2021.2022

A=3(1/1.2+1/2.3+1/3.4+1/4.5+...+1/2021.2022)

A=3(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/2021-1/2022)

A=3[1/1+(1/2-1/2)+(1/3-1/3)+(1/4-1/4)+...+(1/2021-1/2021)-1/2022]

A=3[1/1+0+0+0+...+0-1/2022

A=3(1/1-1/2022)

A=3(2022/2022-1/2022)

A=3.2021/2022

A=2021/674

17 tháng 5 2022

Bn Tham Khảo:

https://hoc247.net/hoi-dap/toan-6/tinh-tong-s-3-1-2-3-2-3-3-3-4-3-4-5-3-2015-2016-faq188428.html

 

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=\dfrac{49}{50}\)

10 tháng 3 2022

\(=\dfrac{49}{50}\)

4 tháng 3 2019

\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2014.2015}\)

\(\Leftrightarrow\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)

\(\Leftrightarrow\frac{1}{4}A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(\Leftrightarrow\frac{1}{4}A=\frac{1}{1}-\frac{1}{2015}\)

\(\Leftrightarrow\frac{1}{4}A=\frac{2014}{2015}\)

\(\Leftrightarrow A=\frac{2014}{2015}\div\frac{1}{4}\)

\(\Leftrightarrow A=\frac{8056}{2015}\)

2 tháng 2 2016

Đặt S=1.2+2.3+.........+2011.2012

3S=1.2.3+2.3.(4-1)+...........+2011.2012.(2013-2010)

3S=1.2.3+2.3.4-1.2.3+...........+2011.2012.2013-2010.2011.2012

3S=2011.2012.2013

S=2011.2012.2013:3

S=2714954572

2 tháng 2 2016

Đặt A = 1.2 + 2.3 + 3.4 + ... + 2011.2012

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2011.2012.3

=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2011.2012.(2013 - 2010)

=> 3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2011.2012.2013 - 2010.2011.2012

=> 3A = 2011.2012.2013

=> A = \(\frac{2011.2012.2013}{3}=2714954572\).

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(A=\dfrac{7}{1.2}+\dfrac{7}{2.3}+\dfrac{7}{3.4}+...+\dfrac{7}{2011.2012}\)

\(A=7\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)\)

\(A=7\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)\)

\(A=7\left(1-\dfrac{1}{2012}\right)=7.\dfrac{2011}{2012}=\dfrac{14077}{2012}\)