Bài 4: Chứng minh rằng: a, aaa¯¯¯¯¯¯¯¯⋮aaaa¯⋮a,37 b,ab(a+b)⋮2ab(a+b)⋮2 c, abc¯¯¯¯¯¯¯−cba¯¯¯¯¯¯¯⋮99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : ab + ba = a . 10 + b + b . 10 + a
= a . (10 + 1) + b . ( 1 + 10)
= a . 11 + b . 11
= (a + b) . 11 \(⋮\)11
b)Ta có : abc - cba = (a . 100 + b . 10 + c) - (c . 100 + b . 10 + a)
= a . 100 + b . 10 + c - c . 100 - b . 10 - a
= a . (100 - 1) + (b . 10 - b . 10) + c . (1 - 100)
= a . 99 + 0 + c . ( - 99)
= (a - c) . 99 \(⋮\)99
c) tự làm
a) ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11.
b)abc - cba = 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 99(a - c) \(⋮\)99
=> abc - cba \(⋮\)99
c)aaa + bbb = 100a + 10a + a + 100b + 10b + b
= 100(a +b) + 10(a + b) + (a + b)
= (a + b)(100 + 10 + 1)
= (a + b) 111
= (a + b) . 3 . 37 \(⋮\)37
=> aaa + bbb \(⋮\)37
aaa=a.100+a.10+a
=a.111
vì 111 chia hết cho 37
=> a.111 chia hết cho 37
=>aaa chia hết cho 37
=> đpcm
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
a) Chứng minh rằng: ab(a + b) chia hết cho 2 ( a;b εN)
TH1: a là số lẻ, b lẻ thì tổng a +b chẵn ==> ab(a + b) chia hết cho 2
TH2: a chẵn, b chẵn thì đương nhiên ab(a + b) chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)
TH3: a chẵn, b lẻ hoặc a lẻ, b chẵn thì đương nhiên ab(a + b) cũng chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)
b) Chứng minh rằng ab + ba chia hế cho 11.
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a+b) chia hết cho 11
c) Chứng minh aaa luôn chia hết cho 37.
aaa = a. 111 = a.37.3 chia hết cho 37
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
A, ab + bc chia het cho 11
Ta có : 10 a +b +10b +a
=11a +11b
=11 (a+b) chia het cho 11
B, abc - cba chia het cho 99
Ta có :( 100a +b +c ) - ( 100c +b+a )
=99a - 99c
=99 (a-b) chia het cho 99
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
a) http://olm.vn/hoi-dap/question/16196.html Bạn vào đây nhé !
b) ab = 10a + b
ba = 10b + a
=>ab + ba = 11(a+b) chia het cho 11.
c) aaa = a x 111 = a x 3 x 37
=> aaa luôn chia hết cho 37
d) aaabbb=a000bx111
111 chia hết cho 37 nên aaabbb chia hết cho 37
e) ab=10*a+b
ba=10*b+a
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9
a) Nếu a và b cùng là số chẵn thì ab﴾a+b﴿chia hết cho 2
nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿thì ab ﴾a+b﴿ chia hết cho 2
Nếu a và b cùng lẻ thì ﴾a+b﴿ chẵn nên ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2
Vậy nếu a,b thuộc N thì ab﴾a+b﴿ chia hết cho 2
b) Ta có :ab= 10*a + b
ba = 10*b + a
=> ab + ba = 11(a+b) chia hết cho 11
Vậy ab+ba chia hết cho 11
c)Ta có : aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
d) aaabbb=aaa000+bbb=111﴾1000a+b﴿=37.3﴾1000a+b﴿ chia hết cho 37
e) ab = 10 . a+b
ba = 10 .b+a ab ‐ ba = 9 . a ‐ 9 . b = 9 . (a ‐ b)
=> ab‐ba chia hết cho 9
Bài 2:
b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-4x-x^4+1\)
\(=-x^4+x^3-4x+1\)
c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)
\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)
\(=b\left(2a+b-2c\right)\)
\(=2ab+b^2-2bc\)
a, Ta có: aaa¯¯¯¯¯¯¯¯=a.111=a.3.37aaa¯=a.111=a.3.37 chia hết cho a và chia hết cho 37 b, Ta có: Vì a, b là hai số tự nhiên nên a,b có các TH sau: TH1: a, b cùng tính chẵn lẻ=> (a+b) là 1 số chẵn nhưu vậy a+b chia hết cho 2 TH2: a, b khác tính chẵn lẻ thì 1 trong 2 số phải có 1 số chẵn khi đó số đó chia hết cho 2