Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)aaa=111a=37.3.a\(⋮37\)(đpcm)
2)aaa+bbb=111a+111b=111(a+b)\(⋮\)11(đpcm)
Dễ mà
a, Ta có : \(\overline{aaa}=a.111=a.3.37\Rightarrow\overline{aaa}⋮37\)
b,Vì : \(\overline{aaaaaa}=a.111111=a.15873.7\Rightarrow\overline{aaaaaa}⋮7\)
c,Vì : \(\overline{abcabc}=\overline{abc}.1001\Rightarrow\overline{abcabc}⋮1001\)
d, Ta có : \(\overline{ab}+\overline{ba}=10a+b+10b+a\)
\(=10a+a+10b+b=11a+11b\)
\(=11\left(a+b\right)⋮11\) ( Vì : \(a+b\in N\) )
Vậy \(\overline{ab}+\overline{ba}⋮11\)
e, \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b+a\right)\)
\(=\left(10-1\right)a-\left(10-1\right)b\)
\(=9a-9b=9\left(a-b\right)\)
Vì : \(a\ge b\Rightarrow a-b\in N\Rightarrow9\left(a-b\right)⋮9\)
Vậy : \(\overline{ab}-\overline{ba}⋮9\)
f, \(\overline{abc}-\overline{cba}=\left(a.100+b10+c\right)-\left(100c+10b+a\right)\)
\(=\left(100a+10a+10c+c\right)-\left(100c+10c+10a+a\right)\)
\(=\left(110a+11c\right)-\left(110c+11a\right)⋮11\)
Vì : \(a\ge c\Rightarrow\overline{abc}-\overline{cba}⋮11\)
Vậy : \(\overline{abc}-\overline{cba}⋮11\)
a) \(\overline{aaa}=a.111⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(đpcm\right)\)
b) \(\overline{aaaaaa}=a.111111⋮7\) ( vì \(111111⋮7\) )
\(\Rightarrow\overline{aaaaaa}⋮7\left(đpcm\right)\)
c) \(\overline{abcabc}=\overline{abc}.1001⋮1001\)
\(\Rightarrow\overline{abcabc}⋮1001\left(đpcm\right)\)
d) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
\(\Rightarrow\overline{ab}+\overline{ba}⋮11\left(đpcm\right)\)
e) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)
\(\Rightarrow\overline{ab}-\overline{ba}⋮9\left(đpcm\right)\)
f) \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=11\left(9a-9b\right)⋮11\)
\(\Rightarrow\overline{abc}-\overline{cba}⋮11\left(đpcm\right)\)
\(\overline{aaa}+\overline{bbb}=111.a+111.b=111\left(a+b\right)=37\times3\times\left(a+b\right)⋮37\)
a, (abc -cba)
= 100a+10b+c -(100c+10b+a)
=100a + 10b +c -100c -10b- a
=99a -99c
=99. (a-c)
=9.11(a-c) chia hết cho 11
hok tốt !
a) Chứng minh rằng: ab(a + b) chia hết cho 2 ( a;b εN)
TH1: a là số lẻ, b lẻ thì tổng a +b chẵn ==> ab(a + b) chia hết cho 2
TH2: a chẵn, b chẵn thì đương nhiên ab(a + b) chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)
TH3: a chẵn, b lẻ hoặc a lẻ, b chẵn thì đương nhiên ab(a + b) cũng chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)
b) Chứng minh rằng ab + ba chia hế cho 11.
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a+b) chia hết cho 11
c) Chứng minh aaa luôn chia hết cho 37.
aaa = a. 111 = a.37.3 chia hết cho 37
Ta có : abcd \(⋮\)99
=> 99ab + ab + cd \(⋮\)99 mà 99ab \(⋮\)99
=> ab + cd \(⋮\)99
Ngược lại
Ta có : ab + cd \(⋮\)99
=> 99ab + ab + cd \(⋮\)99
=> ab . 100 + cd \(⋮\)99
=> abcd \(⋮\)99
Vậy abcd \(⋮\)99 thì ab + cd \(⋮\)và ngược lại
a ) abc - cba
= 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 11 . ( 9a - 9c ) \(⋮\)11
Vậy abc - cba \(⋮\)11 ( dpcm )
a, ab + ba = 10a + b + 10b + a = ( 10a +a ) + (10b +b ) = 11a + 11b =11 ( a + b ) , suy ra :
ab + ba chia hết cho 11 , suy ra ĐPCM.
b, ab - ba = 10a + b - 10b - a =( 10a - a ) + (b - 10b ) = 9a + 9(-b) = 9 (a-b), suy ra :
ab - ba chia hết cho 9 , suy ra ĐPCM
c, aaa = 100a + 10a +a = a (100 + 10 +1 ) = 111.a = 37 . 3 .a, suy ra :
aaa chia hết cho 37, suy ra ĐPCM
a , ab +ba = 10a +b + 10b +a = 11( a + b ) vì 11 chia hết cho 11
vậy biểu thức chia hết cho 11
b, ab - ba = 10a + b - 10b +a = 9a - 9b = 9 ( a-b )
vì 9 cjia hết cho 9 vậy biểu thức chia hết cho 9
a) Ta có : ab + ba = a . 10 + b + b . 10 + a
= a . (10 + 1) + b . ( 1 + 10)
= a . 11 + b . 11
= (a + b) . 11 \(⋮\)11
b)Ta có : abc - cba = (a . 100 + b . 10 + c) - (c . 100 + b . 10 + a)
= a . 100 + b . 10 + c - c . 100 - b . 10 - a
= a . (100 - 1) + (b . 10 - b . 10) + c . (1 - 100)
= a . 99 + 0 + c . ( - 99)
= (a - c) . 99 \(⋮\)99
c) tự làm
a) ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11.
b)abc - cba = 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 99(a - c) \(⋮\)99
=> abc - cba \(⋮\)99
c)aaa + bbb = 100a + 10a + a + 100b + 10b + b
= 100(a +b) + 10(a + b) + (a + b)
= (a + b)(100 + 10 + 1)
= (a + b) 111
= (a + b) . 3 . 37 \(⋮\)37
=> aaa + bbb \(⋮\)37