\(ab+ba⋮11\)

b)\(abc-cba⋮99\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

a) Ta có : ab + ba = a . 10 + b + b . 10 + a

                         = a . (10 + 1) + b . ( 1  + 10)

                          = a . 11 + b . 11

                          = (a + b) . 11 \(⋮\)11

b)Ta có : abc - cba = (a . 100 + b . 10 + c) - (c . 100 + b . 10 + a)

                               = a . 100 + b . 10 + c - c . 100 - b . 10 - a

                               = a . (100 - 1) + (b . 10 - b . 10) + c . (1 - 100)

                               = a . 99 + 0 + c . ( - 99)

                               = (a - c) . 99 \(⋮\)99

c) tự làm

23 tháng 7 2018

a) ab + ba = 10a + b + 10b + a

                = 11a + 11b

                = 11(a + b) \(⋮\)11

 => ab + ba \(⋮\)11.

b)abc - cba = 100a + 10b + c - 100c - 10b - a

                 = 99a - 99c

                 = 99(a - c) \(⋮\)99

 => abc - cba \(⋮\)99

c)aaa + bbb = 100a + 10a + a + 100b + 10b + b

                  = 100(a +b) + 10(a + b) + (a + b)

                  = (a + b)(100 + 10 + 1)

                  = (a + b) 111 

                  = (a + b) . 3 . 37 \(⋮\)37

 => aaa + bbb \(⋮\)37

23 tháng 11 2016

1)aaa=111a=37.3.a\(⋮37\)(đpcm)

2)aaa+bbb=111a+111b=111(a+b)\(⋮\)11(đpcm)

Dễ mà haha

3 tháng 11 2016

a, Ta có : \(\overline{aaa}=a.111=a.3.37\Rightarrow\overline{aaa}⋮37\)

b,Vì : \(\overline{aaaaaa}=a.111111=a.15873.7\Rightarrow\overline{aaaaaa}⋮7\)

c,Vì : \(\overline{abcabc}=\overline{abc}.1001\Rightarrow\overline{abcabc}⋮1001\)

d, Ta có : \(\overline{ab}+\overline{ba}=10a+b+10b+a\)

\(=10a+a+10b+b=11a+11b\)

\(=11\left(a+b\right)⋮11\) ( Vì : \(a+b\in N\) )

Vậy \(\overline{ab}+\overline{ba}⋮11\)

e, \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b+a\right)\)

\(=\left(10-1\right)a-\left(10-1\right)b\)

\(=9a-9b=9\left(a-b\right)\)

Vì : \(a\ge b\Rightarrow a-b\in N\Rightarrow9\left(a-b\right)⋮9\)

Vậy : \(\overline{ab}-\overline{ba}⋮9\)

f, \(\overline{abc}-\overline{cba}=\left(a.100+b10+c\right)-\left(100c+10b+a\right)\)

\(=\left(100a+10a+10c+c\right)-\left(100c+10c+10a+a\right)\)

\(=\left(110a+11c\right)-\left(110c+11a\right)⋮11\)

Vì : \(a\ge c\Rightarrow\overline{abc}-\overline{cba}⋮11\)

Vậy : \(\overline{abc}-\overline{cba}⋮11\)

3 tháng 11 2016

a) \(\overline{aaa}=a.111⋮37\)

\(\Rightarrow\overline{aaa}⋮37\left(đpcm\right)\)

b) \(\overline{aaaaaa}=a.111111⋮7\) ( vì \(111111⋮7\) )

\(\Rightarrow\overline{aaaaaa}⋮7\left(đpcm\right)\)

c) \(\overline{abcabc}=\overline{abc}.1001⋮1001\)

\(\Rightarrow\overline{abcabc}⋮1001\left(đpcm\right)\)

d) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)

\(\Rightarrow\overline{ab}+\overline{ba}⋮11\left(đpcm\right)\)

e) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)

\(\Rightarrow\overline{ab}-\overline{ba}⋮9\left(đpcm\right)\)

f) \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=11\left(9a-9b\right)⋮11\)

\(\Rightarrow\overline{abc}-\overline{cba}⋮11\left(đpcm\right)\)

31 tháng 10 2016

\(\overline{aaa}+\overline{bbb}=111.a+111.b=111\left(a+b\right)=37\times3\times\left(a+b\right)⋮37\)

16 tháng 7 2018

a, (abc -cba)

= 100a+10b+c -(100c+10b+a)

=100a + 10b +c -100c -10b- a

=99a -99c

=99. (a-c) 

=9.11(a-c) chia hết cho 11

hok tốt !

16 tháng 7 2018

Bài 2 hình như sai đề bn nha, 2a+3b+c mới đúng

21 tháng 12 2017

a) Chứng minh rằng: ab(a + b) chia hết cho 2 ( a;b εN)

TH1: a là số lẻ, b lẻ thì tổng a +b chẵn ==> ab(a + b) chia hết cho 2

TH2: a chẵn, b chẵn thì đương nhiên ab(a + b) chia hết cho 2  ( vì có 1 thừa số là số chẵn chia hết cho 2)

TH3: a chẵn, b lẻ hoặc a lẻ, b chẵn thì đương nhiên ab(a + b) cũng chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)

b) Chứng minh rằng ab ba chia hế cho 11.

 ab + ba  = 10a + b + 10b + a = 11a + 11b = 11(a+b) chia hết cho 11

c) Chứng minh aaa luôn chia hết cho 37.

aaa = a. 111 = a.37.3 chia hết cho 37

21 tháng 12 2017

thanks

1 tháng 7 2018

Ta có : abcd \(⋮\)99

=> 99ab + ab + cd \(⋮\)99 mà 99ab  \(⋮\)99

=>  ab + cd \(⋮\)99

Ngược lại 

Ta có : ab + cd \(⋮\)99

=> 99ab + ab + cd \(⋮\)99

=> ab . 100 + cd \(⋮\)99

=> abcd \(⋮\)99

Vậy abcd \(⋮\)99 thì ab + cd \(⋮\)và ngược lại 

1 tháng 7 2018

a ) abc - cba

= 100a + 10b + c - 100c - 10b - a

= 99a - 99c

= 11 . ( 9a - 9c ) \(⋮\)11

Vậy abc - cba \(⋮\)11 ( dpcm )

12 tháng 10 2019

a, ab + ba = 10a + b + 10b + a = ( 10a +a ) + (10b +b ) = 11a + 11b =11 ( a + b ) , suy ra :

ab + ba chia hết cho 11 , suy ra ĐPCM.

b, ab - ba = 10a + b - 10b - a =( 10a - a ) + (b - 10b ) = 9a + 9(-b) = 9 (a-b), suy ra :

ab - ba chia hết cho 9 , suy ra ĐPCM 

c, aaa = 100a + 10a +a = a (100 + 10 +1 ) = 111.a = 37 . 3 .a, suy ra :

aaa chia hết cho 37, suy ra ĐPCM

7 tháng 7 2015

a , ab +ba = 10a +b + 10b +a = 11( a + b ) vì 11 chia hết cho 11

vậy biểu thức chia hết cho 11

b, ab - ba = 10a + b - 10b +a  = 9a - 9b = 9 ( a-b )

vì 9 cjia hết cho 9 vậy biểu thức chia hết cho 9

4 tháng 9 2016

chứng minh ab - ba chia hết cho 9