cho hàm số y= f(x)=kx(k là hằng số khác 0 ) ta có f(10x)=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ta có \(f\left(10x\right)=k.10x=10.kx=10f\left(x\right)\)
b. \(f\left(x_1+x_2\right)=k\left(x_1+x_2\right)=kx_1+kx_2=f\left(x_1\right)+f\left(x_2\right)\)
c.\(f\left(x_1-x_2\right)=k\left(x_1-x_2\right)=kx_1-kx_2=f\left(x_1\right)-f\left(x_2\right)\)
ta có:
\(f\left(x_1\right)=kx_1;f\left(x_2\right)=kx_2=>f\left(x_1-x_2\right)=k.\left(x_1-x_2\right)=kx_1-kx_2\)
vậy \(f\left(x_1-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
tick mk nhé
a) f(10x)=10f(x)
Ta có:
y=f(x)=kx
\(\Rightarrow\)f(10x)=k10x=10kx (*)
\(\Rightarrow\)10f(x)=10kx (**)
Từ (*) và (**)
\(\Rightarrow\)f(10x)=10f(x)
\(\Rightarrow\)đpcm
b) f(x1+x2)=f(x1)+f(x2)
Ta có:
y=f(x) =kx
\(\Rightarrow\)f(x1+x2)=k(x1+x2) (*)
\(\Rightarrow\)f(x1)+f(x2)=kx1+kx2=k(x1+x2) (**)
Từ (*) và (**)
\(\Rightarrow\)f(x1+x2)=f(x1)+f(x2)
\(\Rightarrow\)đpcm
c) f(x1-x2)=f(x1)-f(x2)
Ta có:
y=f(x)=kx
\(\Rightarrow\)f(x1-x2)=k(x1-x2) (*)
\(\Rightarrow\)f(x1)-f(x2)=kx1-kx2=k(x1-x2) (**)
Từ (*) và (**)
\(\Rightarrow\)f(x1-x2)=f(x1-x2)
\(\Rightarrow\)đpcm
P/s: đã sửa đề