Cho tam giác ABC, góc A < 90o, M là trung điểm của BC. CMR:
AB2 + AC2 = 2AM2 + BC2/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) Xét }\)\(\Delta ABD\text{ và }\Delta MCD\text{ có :}\)
\(BD=DC\left(gt\right)\)
\(\widehat{ADB}=\widehat{MDC}\left(đ^2\right)\)
\(AD=DM\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta MCB\left(c.g.c\right)\)
\(\Rightarrow AB=MC\)\(\left(\text{hai cạnh tg ứng}\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{BCM}=90^o\)
\(\Rightarrow MC\perp BC\)
\(\text{b) Xét :}\)\(\Delta ABC\perp\text{ tại B}\)
\(\Delta MCB\perp\text{tại C }\)
\(\text{Có :}\)\(AB=MC\left(cmt\right)\)
\(BC:\text{ cạnh chung}\)
\(\Rightarrow\Delta ABC=\Delta MCB\left(Cgv-cgv\right)\)
\(\Delta ABC\) có \(AB=BC\left(gt\right)\) nên là tam giác cân
\(\Rightarrow ABC=ACB=\frac{180-A}{2}=\frac{180-40^o}{2}=70^o\)
\(AM\) là đường trung tuyến của tam giác cân đó ( vì \(MB=MC\) )
\(\Delta ABC\) cân tại \(A\)có \(AM\)l là đường trung tuyến nên cũng là đường cao và đường phân giác
\(\Rightarrow\)Góc \(AMB=\) góc\(AMC=90^o\) và góc \(BAM=CAM=\frac{A}{2}=\frac{40^o}{2}=20^o\)
xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)
suy ra tam giác ABM=tam giác ACN(c.g.c)
suy ra AM=AN
suy ra tam giác AMN cân tại A
b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)
suy ra tam giác AHB= tam giác AKC(ch-gn)
suy ra BH=CK
Tham Khảo e nhá chj ngu ném ko bik làm☹
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-m-la-trung-diem-bc-chung-minh-ab2-ac2-2am2-bc22.249563555147
Kẻ AH vuông góc BC.
Xét tam giác AHM vuông tại H (^AHM = 900) có:
AM2 = AH2 + HM2 (định lý Pytago).
Xét tam giác AHB vuông tại H (^AHB = 900) có:
AB2 = AH2 + BH2 (định lý Pytago).
Xét tam giác AHC vuông tại H (^AHC = 900) có:
AC2 = AH2 + CH2 (định lý Pytago).
Ta có: BH = BM - HM.
CH = CM + HM.
Vì M là trung điểm của BC (gt) => BM = CM; BM = \(\dfrac{BC}{2}\) => BM2 = \(\dfrac{BC^2}{4}\).
Ta có: AB2 + AC2 = AH2 + BH2 + AH2 + CH2.
AB2 + AC2 = AH2 + AH2 + BH2 + CH2.
= 2AH2 + (BM - HM)2 + (CM + HM)2.
= 2AH2 + BM2 - 2BM.HM + HM2 + CM2 + 2CM.HM + HM2.
= 2AH2 + BM2 - 2BM.HM + HM2 + BM2 + 2BM.HM + HM2.
= 2AH2 + 2HM2 + 2BM2.
= 2(AH2 + HM2) + 2\(\dfrac{BC^2}{4}\).
AB2 + AC2 = 2AM2 + \(\dfrac{BC^2}{2}\) (đpcm).