K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2015

\(\Delta ABC\) có \(AB=BC\left(gt\right)\) nên là tam giác cân

\(\Rightarrow ABC=ACB=\frac{180-A}{2}=\frac{180-40^o}{2}=70^o\)

\(AM\) là đường trung tuyến của tam giác cân đó ( vì \(MB=MC\) )

\(\Delta ABC\) cân tại \(A\)có \(AM\)l là đường trung tuyến nên cũng là đường cao và đường phân giác

\(\Rightarrow\)Góc \(AMB=\) góc\(AMC=90^o\) và góc \(BAM=CAM=\frac{A}{2}=\frac{40^o}{2}=20^o\)

 

 

\(\widehat{ABM}=\widehat{ACM}=\dfrac{180^0-40^0}{2}=70^0\)

\(\widehat{BAM}=\widehat{CAM}=\dfrac{40^0}{2}=20^0\)

\(\widehat{AMB}=\widehat{AMC}=90^0\)

15 tháng 11 2021

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

hay \(\widehat{AMB}=90^0\)

15 tháng 11 2021

\(\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM.chung\end{matrix}\right.\Rightarrow\Delta AMC=\Delta AMB\left(c.c.c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\Rightarrow\widehat{AMB}=\dfrac{180^0}{2}=90^0\)

15 tháng 11 2021

Xong =))???

27 tháng 4 2016

ban tu ve hinh nha:

xet tam giacAMB va tam giaAMC

 AB=AC  

AM chung

M1=m2

suy ra hai tam giacAmb va amc bang nhau.

27 tháng 4 2016

b, Vì tam giác AMB=tam giác AMC ( theo câu a) nên góc AMB=góc AMC(2 góc tương ứng).

mà AMB + AMC = 180 độ ( kề bù ) nên suy ra góc AMB=góc AMC=180 độ:2= 90 độ

\(\Rightarrow\) AM vuông góc với BC

\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)

=> \(\widehat{B}=\widehat{C}\)=50o

=> \(\widehat{A}\)=80o

Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)

<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)

Xét \(\Delta ABK\)

\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)

=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)

=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)

26 tháng 7 2018

giúp mk vs 

13 tháng 11 2018

a, xét tam giác ABC có : 

AB = AC 

=> tam giác ABC cân 

=> góc B = góc C ( hai góc đáy bằng nhau ) 

b, Xét tam giác ACM và tam giác ABM có :

AC = AB ( gt ) 

góc B = góc C ( phần a ) 

AM chung 

=> tam giác ACM = tam giác ABM ( c. g . c ) 

=> CM = BM ( 2 cạnh tương ứng ) 

=> M là trung điểm của BC