Chứng minh rằng: 2(x+y)=5(y+z)=3(z+x) thì x-y/4=y-z/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đừng ai giải bài này nha, vì nó có trong đề của cuộc thi bên h của mình. Các bạn thông cảm
2(x+y) = 5(y+z) = 3(z+x)
<=>
(x+y)/(1/2) = (y+z)/(1/5) = (z+x)/(1/3) = (x+y-z-x)/(1/2-1/3) = (z+x-y-z)/(1/3-1/5)
=> (y-z)/(1/2-1/3) = (x-y)/(1/3-1/5) => (y-z)/(1/6) = (x-y)/(2/15)
=> 6(y-z) = 15(x-y)/2 <=> 2(y-z) = 5(x-y)/2 <=> (y-z)/5 = (x-y)/4 đpcm
=> \(\frac{\text{2(x+y)}}{30}\)=\(\frac{\text{5(y+z)}}{30}\)=\(\frac{\text{3(z+x)}}{30}\)
=> \(\frac{\text{x+y}}{15}\)=\(\frac{\text{y+z}}{6}\)=\(\frac{\text{z+x}}{10}\)
Theo t/c dãy tỉ số bằng nhau có:
\(\frac{\text{x+y}}{15}\)=\(\frac{\text{y+z}}{6}\)=\(\frac{\text{z+x}}{10}\)=\(\frac{\left(z+x\right)-\left(y+z\right)}{10-6}\)=\(\frac{x-y}{4}\)*
\(\frac{\text{x+y}}{15}\)=\(\frac{\text{y+z}}{6}\)=\(\frac{\text{z+x}}{10}\)=\(\frac{\left(x+y\right)-\left(z+x\right)}{15-10}\)=\(\frac{y-z}{5}\)**
Từ * và ** => \(\frac{x-y}{4}\)=\(\frac{y-z}{5}\)(đpcm)
K cần t i c k
Vì 5(y+z)=3(z+x) =>(x+z)/5=(y+z)/3=(x+z-y-z)/(5-3) = (x-y)/2
Ap dung tinh chat day ti so bang nhau ta co :
Do đó (x+z)/5 = (x-y)/2 \(\Leftrightarrow\) (x+z)/10=(x-y)/4 (1)
Ta lại có: 2(x+y)=3(z+x) \(\Rightarrow\) (x+z)/2=(x+y)/3=(x+z-x-y)/(2-3)=y-z
Ap dung tinh chat day ti so bang nhau ta co :
Do đó (x+z)/2 = y-z \(\Leftrightarrow\) (x+z)/10=(y-z)/5 (2)
Từ (1) và (2) suy ra (x-y)/4=(y-z)/5
Từ : \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)
=> \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
Ta có : \(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\left(1\right)\)
\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\left(2\right)\)
Vậy : ...
\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=k\Rightarrow\hept{\begin{cases}x+y=15k\\y+z=6k\\z+x=10k\end{cases}\Rightarrow\hept{\begin{cases}x-y=4k\\y-z=5k\end{cases}\Rightarrow}\frac{x-y}{4}=\frac{y-z}{5}}\)
\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{6}=\frac{z+x}{10}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\)
\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\)
Suy ra đpcm.