\(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

Ta có : \(2\left(x+y\right)=5\left(y+z\right)=3\left(x+z\right)\)

=> \(\dfrac{2\left(x+y\right)}{30}=\dfrac{5\left(y+z\right)}{30}=\dfrac{3\left(x+z\right)}{30}\)

=> \(\dfrac{x+y}{15}=\dfrac{y+z}{6}=\dfrac{x+z}{10}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x+y}{15}=\dfrac{y+z}{6}=\dfrac{x+z}{10}=\dfrac{x+z-y-z}{10-6}=\dfrac{x+y-x-z}{15-10}=\dfrac{x-y}{4}=\dfrac{y-z}{5}\left(ĐPCM\right)\)

21 tháng 7 2018

Giúp mình với nhé

13 tháng 10 2018

2) Mình nghĩ nên nhỏ hơn 3 thì dễ tính hơn... @@
Ta có :

\(\dfrac{x}{x+y+z}< \dfrac{x}{x+y}< \dfrac{x}{x}\\ \dfrac{y}{x+y+z}< \dfrac{y}{y+z}< \dfrac{y}{y}\\ \dfrac{z}{x+y+z}< \dfrac{z}{z+x}< \dfrac{z}{z}\)

\(\Rightarrow\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x}{x}+\dfrac{y}{y}+\dfrac{z}{z}\\ \Rightarrow\dfrac{x+y+z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 1+1+1\\ \Rightarrow1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 3\)

23 tháng 10 2018

\(\dfrac{x}{z}=\dfrac{z}{y}\Rightarrow\dfrac{x.z}{z.y}=\dfrac{x}{y}=\dfrac{x^2}{z^2}=\dfrac{z^2}{y^2}=\dfrac{x^2+z^2}{y^2+z^2}\)

23 tháng 10 2018

đăt \(\dfrac{x}{z}=\dfrac{z}{y}=k\)

=>\(\left\{{}\begin{matrix}x=zk\\z=yk\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=yk^2\\z=yk\end{matrix}\right.\)

ta có :\(\dfrac{x}{y}=\dfrac{yk^2}{y}=k^2\left(1\right)\)

lại có \(\dfrac{x^2+z^2}{y^2+z^2}=\dfrac{y^2k^4+y^2k^2}{y^2+y^2k^2}=\dfrac{y^2k^2.\left(k^2+1\right)}{y^2.\left(1+k^2\right)}=k^2\left(2\right)\)

từ (1) và (2) => ĐPCM

5 tháng 12 2017

\(P=\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}>\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=1\) (1)

\(P=\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x+z}{x+y+z}+\dfrac{x+y}{x+y+z}+\dfrac{y+z}{x+y+z}=2\)(2)

Từ (1) và (2) ta có đpcm