A = ( 1 - 1/2 ) . ( 1 - 1/3) . ( 1- 1/4 ) . ... . ( 1 - 1/100 )
tính tổng A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}\cdot\frac{1}{4949}\)
\(A=\frac{1}{9898}\)
\(\Rightarrow3.A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3.A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\)
\(2.A=1-\frac{1}{3^{100}}=\frac{3^{100}-1}{3^{100}}\Rightarrow A=\frac{3^{100}-1}{2.3^{100}}\)
a) Đặt M=1/2+1/22+1/23+...+1/21998
=>2M=1+1/2+1/22+1/23+...+1/21997
2M-M=(1+1/2+1/22+1/23+...+1/21997)-(1/2+1/22+1/23+...+1/21998)
M=1-1/21998
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)
Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)
ta có dãy số: 1; 2; ....;100
Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)
Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)
A = 1
1.
a,(1-1/2).(1-1/3).(1-1/4).(1-1/5)
=1/2.2/3.3/4.4/5
=1/5
b,(1-3/4).(1-3/7)....(1-3/97).(1-1/100)
=1/4. 4/7.7/10.....94/97.97/100
=1/100
1) Tính tổng:
a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}=\frac{1}{5}\)
b) \(\left(1-\frac{3}{4}\right)\left(1-\frac{3}{7}\right)\left(1-\frac{3}{10}\right)...\left(1-\frac{3}{97}\right)\left(1-\frac{3}{100}\right)=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}...\frac{94}{97}.\frac{97}{100}=\frac{1}{100}\)