Để đa thức 2ax2+bx-3 chia hết cho 4x-1 va x+3. Tính a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x = -1 là nghiệm của H(x) nên
H(-1) = 0 ⇒ 2a(-1)2 + b(-1) = 2a - b = 0 ⇒ b = 2a
Vì H(1) = 4 ⇒ 2a.12 + b.1 = 2a + b = 4 ⇒ b = 4 - 2a
Ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1, từ đó b = 2. Chọn B
Cho đa thức F(x) = 2ax2 + bx (a,b là hằng số). Xác định a,b để đa thức F(x) có nghiệm x = -1 và F(1) = 4
Vì đa thức F(x) có nghiệm x = -1 nên thay F(-1) = 0
⇒ 2a - b = 0 ⇒ b = 2a (0.5 điểm)
Vì F(1) = 4 ⇒ 2a + b = 4 ⇒ b = 4 - 2a
Từ đây ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1 (0.5 điểm)
Gỉar sử \(A:B\) được thương là \(4x+c\)
DO \(A⋮B\) nên \(A:B\) được dư bằng 0
Khi đó
\(4x^3+ax^2+bx+5=\left(4x+c\right)\left(x^2-x+1\right)\)
\(=4x^3+cx^2-4x^2-cx+4x+c\)
\(=4x^3+x^2\left(c-4\right)+x\left(4-c\right)+c\)
Áp dụng đồng nhất thức ta có
\(\left\{{}\begin{matrix}a=c-4\\b=4-c\\c=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)
Vậy...
Ta có:\(f\left(x\right)⋮4x-1\Rightarrow f\left(\dfrac{1}{4}\right)=0\)
\(f\left(x\right)⋮x+3\Rightarrow f\left(-3\right)=0\)
Ta có hpt:\(\left\{{}\begin{matrix}2\left(\dfrac{1}{4}\right)^2a+\dfrac{1}{4}b-3=0\\2.\left(-3\right)^2a-3b-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=11\end{matrix}\right.\)
bạn ơi chỗ f(1/4)=0 làm sao ra được vậy, mình không hiểu
Thay x= - 1 vào đa thức , ta có
F(x)= 2a(-1)2 + b(-1)
F(x)= 2a-b
Đặt F(x)=0, ta có :
2a-b=0=> 2a = b hay b gấp đôi a
đáp án là 13
mình lấy 2 nghiệm của 4x-1 và x+3 lần lượt thay vào đa thức 2ax2+bx-3
ta được hệ phương trình giải hệ ta đươc a và b
nhớ k cho mình nha