tìm số nguyên x,y biết 2xy-6x+y=10
cách làm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2xy+6x=y−22xy+6x=y−2
⇔2x(y+3)=y+3−5⇔2x(y+3)=y+3−5
⇔(2x−1)(y+3)=−5⇔(2x−1)(y+3)=−5
Xet U(-5) nhé bạn
2xy - 6x + y = - 7
2xy - 2x.3 + y = - 7
2x(y - 3) + y = - 7
2x(y - 3) + y - 3 = - 10
(2x + 1)(y - 3) = - 10
=> 2x + 1 và y - 3 là ước của - 10
=> Ư(- 10) = { ± 1; ± 2; ± 5 ± 10 }
Vì 2x + 1 là số lẻ => 2x + 1 = { ± 1; ± 5 }
Nếu 2x + 1 = 5 thì y - 3 = - 2 => x = 2 thì y = 1
Nếu 2x + 1 = 1 thì y - 3 = - 10 => x = 0 thì y = - 7
Nếu 2x + 1 = - 1 thì y - 3 = 10 => x = - 1 thì y = 13
Nếu 2x + 1 = - 5 thì y - 3 = 2 => x = - 3 thì y = 5
Vậy ( x;y ) = { ( 2;1 ); ( 0;-7 ); ( -1;13 ); ( -3;5 ) }
6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2) thuộc Z =>(2x-1),(3y+2) thuộc U(6) xong giải ra bình thường nhé mấy câu sau tương tự
Ta có: 6x + 2xy - y = 10
⇔ 2xy + 6x - y - 3 = 7
⇔ 2x(y + 3) - (y + 3) = 7
⇔ (y + 3)(2x - 1) = 7
Mà x ∈ Z ⇒ 2x - 1 ∈ Z
⇒ 2x - 1 ∈ Ư(7) = {1; -1; 7; -7}
2x - 1 | 1 | -1 | 7 | -7 |
2x | 2 | 0 | 8 | -6 |
x | 1 | 0 | 4 | -3 |
y+3 | 7 | -7 | 1 | -1 |
y | 4 | -10 | -2 | -4 |
Vậy ...
Phân tích thành nhân tử được (y−3)(2x−5)=33(y−3)(2x−5)=33
Xét các trường hợp ra rồi chọn các cặp nghiệm (x; y) = (3; 36); (4; 14); (8; 6); (19; 4).
Ta có : \(6x+5y+18=2xy\)
\(\Leftrightarrow2xy-6x-5y=18\)
\(\Leftrightarrow2xy-6x+15-5y=33\)
\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)
\(\Leftrightarrow\left(y-3\right)\left(2x-5\right)=33=1.33=3.11=-1.\left(-33\right)=-33.\left(-1\right)=-3.\left(-11\right)=-11.\left(-3\right)\)
Xét các trường hợp sau:
\(\hept{\begin{cases}y-3=1\\2x-5=33\end{cases}\Rightarrow\hept{\begin{cases}y=4\\x=19\end{cases}}}\); \(\hept{\begin{cases}y-3=11\\2x-5=3\end{cases}\Rightarrow}\hept{\begin{cases}y=14\\x=4\end{cases}}\)
\(\hept{\begin{cases}y-3=33\\2x-5=1\end{cases}\Rightarrow}\hept{\begin{cases}y=36\\x=3\end{cases}}\) ; \(\hept{\begin{cases}y-3=3\\2x-5=11\end{cases}\Rightarrow}\hept{\begin{cases}y=6\\x=8\end{cases}}\)
Bạn tự xét các trường hợp còn lại
Vậy............................
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)