CMR nếu (a+2b) chia hểt cho 7 thì abb chi hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abb}=100xa+11xb=98xa+7xb+2x\left(a+2xb\right)\)
Ta có
\(98xa+7xb⋮7\)
\(a+2xb⋮7\Rightarrow2\left(a+2xb\right)⋮7\)
\(\Rightarrow\overline{abb}⋮7\)
Ta có: \(\overline{abb}=100a+10b+10b=100a+11b\)
=98a+2a +7b+4b
Vì \(\text{a+2b }⋮7\) nên \(\text{2(a+2b)}⋮7\) hay \(2a+4b⋮7\)
Lại có \(98a⋮7\left(vì98⋮7\right)\)và \(7b⋮7\) nên \(\text{98a+2a +7b+4b }⋮7\) hay \(\overline{abb}⋮7\)
a) Do 20a + 11b chia hết cho 17 => 5.(20a + 11b)
=> 100a+55b chia hết cho 17
=>(83a + 38b) + 17a + 17b chia hết cho 17
Vì 17a chia hết cho 17 với mọi a thuộc N (1)
17b chia hết cho 17 với mọi b thuộc N (2)
10.(20a+11b) chia hết cho 17 (như trên) (3)
Từ (1), (2), (3) => 83a + 38b chia hết cho 17. (tính chất chia hết của một tổng)
b) Do 2a + 3b + 4c chia hết cho 7 => 10.(2a + 3b + 4c) chia hết cho 7
=> 20a + 30b + 40c chia hết cho 7
=> (13a + 2b - 3c) + 7a + 28b + 7c chia hết cho 7
Mà 7a chia hết cho 7 với mọi a thuộc N
28b chia hết cho 7 với mọi b thuộc N
7c chia hết cho 7 với mọi c thuộc N
=> 13a + 2b -3c chia hết cho 7
Vậy...
\(a-2b⋮7;7b⋮7\Rightarrow a-2b-7b=a-9b⋮7\)
\(a-9b⋮7;7b⋮7\Rightarrow a-9b+7b=a-2b⋮7\)
ta co: abb=100a+10b+b
=>99a+(a+2b)+9b
ma (a+2b) chia hết cho 7=>99a+9b chi het cho 7
=>abb chia het cho 7
Ta có: a+2b chia hết cho 7
=>100(a+2b) chia hết cho 7
=>100a+200b chia hết cho 7
=>100a+200b-189b chia hết cho 7 (do 189b chia hết cho 7)
=>100a+11b chia hết cho 7
=>100a+10b+b chia hết cho 7
=>abb chia hết cho 7(đpcm)
Gọi A = a + 2b và B = abb
Ta có : B = 100a + 11b và :
100A = 100 . ( a + 2b )
100A = 100a + 200b
=> 100A - B = 100a + 200b - 100a - 11b
=> 100A - B = 200b - 11b = 189b chia hết cho 7 ( vì 189 chia hết cho 7 )
=> 100A - B chia hết cho 7
mà A chia hết cho 7 => 100A chia hết cho 7 => B chia hết cho 7 ( đpcm )