K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

abb là tích của a và 2b hay là số có ba chữ số hả bạn

6 tháng 4 2018
là số abb bn nhé
7 tháng 1 2016

ta co: abb=100a+10b+b

=>99a+(a+2b)+9b

ma (a+2b) chia hết cho 7=>99a+9b chi het cho 7

=>abb chia het cho 7

7 tháng 1 2016

Ta có: a+2b chia hết cho 7

=>100(a+2b) chia hết cho 7

=>100a+200b chia hết cho 7

=>100a+200b-189b chia hết cho 7                        (do 189b chia hết cho 7)

=>100a+11b chia hết cho 7

=>100a+10b+b chia hết cho 7

=>abb chia hết cho 7(đpcm)

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

29 tháng 8 2018

Gọi A = a + 2b và B = abb

Ta có : B = 100a + 11b và :

100A = 100 . ( a + 2b )

100A = 100a + 200b

=> 100A - B = 100a + 200b - 100a - 11b

=> 100A - B = 200b - 11b = 189b chia hết cho 7 ( vì 189 chia hết cho 7 )

=> 100A - B chia hết cho 7

mà A chia hết cho 7 => 100A chia hết cho 7 => B chia hết cho 7 ( đpcm )

29 tháng 8 2018

Cảm ơn bạn nhiều.

Gọi A = a + 2b và B = abb

Ta có : B = 100a + 11b và :

100A = 100 . ( a + 2b )

100A = 100a + 200b

=> 100A - B = 100a + 200b - 100a - 11b

=> 100A - B = 200b - 11b = 189b chia hết cho 7 ( vì 189 chia hết cho 7 )

=> 100A - B chia hết cho 7

mà A chia hết cho 7 => 100A chia hết cho 7 => B chia hết cho 7 ( đpcm )

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60