1+2+1+2+3+....+3^101
Mn giúp mình với ạ, cảm ơn ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x-\frac{x}{3}\times \frac{3}{2}=2-\frac{1}{2}$
$x-x\times \frac{1}{2}=\frac{3}{2}$
$x\times (1-\frac{1}{2})=\frac{3}{2}$
$x\times \frac{1}{2}=\frac{3}{2}$
$x=\frac{3}{2}: \frac{1}{2}=3$
\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{100}\)
\(\Rightarrow A=\dfrac{99}{100}\)
Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?
=1/2+1/3+1/4+...+1/100
xét mẫu:có ssh là (100-2):1+1=99 số
tổng là (100+2)*99:2=5940
vậy ta có 1/5940
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2-4x+3-x^2=0\)
\(\Leftrightarrow-4x=-3\)
hay \(x=\dfrac{3}{4}\)(thỏa ĐK)
Vậy: \(S=\left\{\dfrac{3}{4}\right\}\)
\(\dfrac{3}{2}\)(\(x\) - \(\dfrac{5}{3}\)) - \(\dfrac{4}{5}\) = \(x\) + 1
\(\dfrac{3}{2}\) \(x\) - \(\dfrac{15}{6}\) - \(\dfrac{4}{5}\) = \(x\) + 1
\(\dfrac{3}{2}\)\(x\) - \(x\) = 1 + \(\dfrac{15}{6}\) + \(\dfrac{4}{5}\)
\(\dfrac{1}{2}\)\(x\) =\(\dfrac{43}{10}\)
\(x\) = \(\dfrac{43}{10}\) \(\times\) 2
\(x\) = \(\dfrac{43}{5}\)
\(\dfrac{3}{2}\left(x-\dfrac{5}{3}\right)-\dfrac{4}{5}=x+1\\ \Rightarrow\dfrac{3.\left(x-\dfrac{5}{3}\right)}{2}-\dfrac{4}{5}=x+1\\ \Rightarrow\dfrac{3x-5}{2}-\dfrac{4}{5}=x+1\Rightarrow\dfrac{5\left(3x-5\right)}{10}-\dfrac{8}{10}=x+1\\ \Rightarrow\dfrac{15x-33}{10}=x+1\\ \Rightarrow\dfrac{15x-33}{10}-x=x+1\\ \Rightarrow\dfrac{15x-33}{10}=x+1-x\\ \Rightarrow5x-33=10\\ \Rightarrow5x=10+33\\\Rightarrow5x=43\\ \Rightarrow x=\dfrac{43}{5} \)
a) x - 1/2 = 3/5
x = 3/5 + 1/2
x = 11/10
b) x - 1/2 = -2/3
x = -2/3 + 1/2
x = -1/6
c) 2/5 - x = 0,25
x = 2/5 - 0,25
x = 2/5 - 1/4
x = 3/20
\([\)6+(\(\dfrac{1}{2}\))3\(]\):\(\dfrac{3}{12}\)=\([\)6+\(\dfrac{1}{8}\)\(]\):\(\dfrac{1}{4}\)=\(\dfrac{49}{8}\):\(\dfrac{1}{4}\)=\(\dfrac{49}{2}\).
\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{1963}-1\right)\)
\(=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{1963}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1962}{1963}\)
\(=\frac{1}{1963}\)
3333333333333333333333333333333333333333333333333333333333333333333333333333