Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{100}\)
\(\Rightarrow A=\dfrac{99}{100}\)
Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?
=1/2+1/3+1/4+...+1/100
xét mẫu:có ssh là (100-2):1+1=99 số
tổng là (100+2)*99:2=5940
vậy ta có 1/5940
\(\dfrac{3}{2}\)(\(x\) - \(\dfrac{5}{3}\)) - \(\dfrac{4}{5}\) = \(x\) + 1
\(\dfrac{3}{2}\) \(x\) - \(\dfrac{15}{6}\) - \(\dfrac{4}{5}\) = \(x\) + 1
\(\dfrac{3}{2}\)\(x\) - \(x\) = 1 + \(\dfrac{15}{6}\) + \(\dfrac{4}{5}\)
\(\dfrac{1}{2}\)\(x\) =\(\dfrac{43}{10}\)
\(x\) = \(\dfrac{43}{10}\) \(\times\) 2
\(x\) = \(\dfrac{43}{5}\)
\(\dfrac{3}{2}\left(x-\dfrac{5}{3}\right)-\dfrac{4}{5}=x+1\\ \Rightarrow\dfrac{3.\left(x-\dfrac{5}{3}\right)}{2}-\dfrac{4}{5}=x+1\\ \Rightarrow\dfrac{3x-5}{2}-\dfrac{4}{5}=x+1\Rightarrow\dfrac{5\left(3x-5\right)}{10}-\dfrac{8}{10}=x+1\\ \Rightarrow\dfrac{15x-33}{10}=x+1\\ \Rightarrow\dfrac{15x-33}{10}-x=x+1\\ \Rightarrow\dfrac{15x-33}{10}=x+1-x\\ \Rightarrow5x-33=10\\ \Rightarrow5x=10+33\\\Rightarrow5x=43\\ \Rightarrow x=\dfrac{43}{5} \)
a) x - 1/2 = 3/5
x = 3/5 + 1/2
x = 11/10
b) x - 1/2 = -2/3
x = -2/3 + 1/2
x = -1/6
c) 2/5 - x = 0,25
x = 2/5 - 0,25
x = 2/5 - 1/4
x = 3/20
\([\)6+(\(\dfrac{1}{2}\))3\(]\):\(\dfrac{3}{12}\)=\([\)6+\(\dfrac{1}{8}\)\(]\):\(\dfrac{1}{4}\)=\(\dfrac{49}{8}\):\(\dfrac{1}{4}\)=\(\dfrac{49}{2}\).
\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{1963}-1\right)\)
\(=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{1963}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1962}{1963}\)
\(=\frac{1}{1963}\)
`A=1+2^2 +2^3 +...+2^10`
`2A=2+2^3 +2^4 +...+2^11`
`A=2+2^3 +2^4 +...+2^11 -1-2^2 -2^3 -...-2^10`
`A=2+2^11 -1-2^2`
`A=2+2048-1-4`
`A=2045`
Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\cdot\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=2+2^3+2^4+...+2^{11}-1-2^2-2^3-...-2^{10}\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2^{10}-2^{10}\right)+\left(2+2^{11}-1-2^2\right)\)
\(\Rightarrow A=0+0+0+...+2+2^{11}-1-2^2\)
\(\Rightarrow A=2+2^{11}-1-4\)
\(\Rightarrow A=2^{11}-3\)
=[\(\left(\frac{2}{3}.\frac{5}{7}+\frac{2}{3}.\frac{2}{7}\right).\left(\frac{-1}{3}\right)\)]
=[\(\left(\frac{2}{3}\right).\left(\frac{5}{7}+\frac{2}{7}\right).\left(\frac{-1}{3}\right)\)]
=[\(\left(\frac{2}{3}.1\right).\frac{-1}{3}\)]
=\(\frac{-1}{3}\)
`@` `\text {Ans}`
`\downarrow`
\(\left(\dfrac{x}{3}+\dfrac{1}{2}\right)\left(75\%-1\dfrac{1}{2}x\right)=0\)
`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}+\dfrac{1}{2}=0\\\dfrac{75}{100}-\dfrac{3}{2}x=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{1}{2}\\\dfrac{3}{2}x=\dfrac{75}{100}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=-1\cdot3\\x=\dfrac{75}{100}\div\dfrac{3}{2}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x={-3/2; 1/2}.`
3333333333333333333333333333333333333333333333333333333333333333333333333333