K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2022

hhhhhhhhhh

a: Xét ΔIHB vuông tại H và ΔIKC vuông tại K có

IB=IC

\(\widehat{HBI}=\widehat{KCI}\)

Do đó: ΔIHB=ΔIKC

b: Ta có: ΔIHB=ΔIKC

nên IB=IC

mà IB>IK

nên IB>IK

c: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

HI=KI

Do đó: ΔAHI=ΔAKI

Suy ra: AH=AK

Xét ΔHIE vuông tại H và ΔKIF vuông tại K có

IH=IK

\(\widehat{HIE}=\widehat{KIF}\)

Do đó: ΔHIE=ΔKIF

Suy ra: HE=KF

Ta có: AH+HE=AE

AK+KF=AF

mà AH=AK

và HE=KF

nên AE=AF

hay ΔAEF cân tại A

a: Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

=>ΔABI=ΔACI

b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

góc HAI=góc KAI

=>ΔAHI=ΔAKI

=>IH=IK

c: Xét ΔIHE vuông tại H và ΔIKF vuông tại K có

IH=IK

góc HIE=góc KIF

=>ΔIHE=ΔIKF

=>HE=KF

Xét ΔAEF có AH/HE=AK/KF

nên HK//EF

a: Xét ΔIHB vuông tại H và ΔIKC vuông tại K có

IB=IC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔIHB=ΔIKC

b: Ta có: ΔIHB=ΔIKC

nên IH=IK

mà IH<IB

nên IK<IB

23 tháng 2 2017

18 tháng 11 2023

a: Xét ΔAIB và ΔAIC có

AB=AC

\(\widehat{BAI}=\widehat{CAI}\)

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)

mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)

nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)

=>AI\(\perp\)BC

b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAHI=ΔAKI

=>IH=IK

c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có

IH=IK

\(\widehat{HIN}=\widehat{KIM}\)

Do đó: ΔHIN=ΔKIM

=>IN=IM và HN=KM

ΔAHI=ΔAKI

=>AH=AK

AH+HN=AN

AK+KM=AM

mà AH=AK và HN=KM

nên AN=AM

=>A nằm trên đường trung trực của NM(1)

IN=IM(cmt)

nên I nằm trên đường trung trực của MN(2)

PN=PM

=>P nằm trên đường trung trực của MN(3)

Từ (1),(2),(3) suy ra A,I,P thẳng hàng

19 tháng 11 2023

cảm ơn bạn Nguyễn Lê Phước Thịnh ạ