Tìm tất cả các giá trị nguyên của a để đa thức: f(x)=(x+a).(x+10)+1 phân tích được thành tích của 2 đa thức bậc nhất có hệ số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử (x-a)(x-10)+1 phân tích thành tích 2 đa thức bậc nhất có hệ số nguyên:(x-a)(x-10)+1 = (x-b)(x-c) x²-(10+a)x+10a+1 = x²-(b+c)x+bc => 10+a = b+c và 10a+1 = bc. bc=10a+1=10a+100 – 99 = 10(a+10)-99 = 10(b+c)-99 =>bc=10(b+c)-99 =>bc-10b-10c+100=1 (b-10)(c-10)=1 =>b-10=c-10=±1 b-10=c-10=1 => b=c=11 => a=b+c-10=12 b-10=c-10=-1 => b=c=9 => a=b+c-10=8 Vậy a=10 và a=8 a=12 => (x-a)(x-10)+1 =(x-12)(x-10)+1 = x²-22x+121 =(x-11)(x-11) a=8 => (x-a)(x-10)+1 =(x-8)(x-10)+1 = x²-18x+81=(x-9)(x-9)
ko hỉu j cả Nguyễn Thị Thuỳ Linh CTV, bn có thể trình bày rõ ràng đc ko. Cám ơn nhiều!
Để phân tích đa thức thành tích của một đa thức bậc nhất có các hệ số nguyên, ta cần tìm giá trị của a và b sao cho đa thức (x - a)(x - 10) + 1 có phân tích thành tích của đa thức bậc nhất.
Đặt đa thức bậc nhất có hệ số nguyên là (x - b).
Để phân tích đa thức ban đầu thành tích của đa thức bậc nhất, ta sẽ nhân các đa thức bậc nhất có hệ số nguyên lại với nhau:
(x - a)(x - 10) = (x - b)(x - c)
Nhân hai đa thức bậc nhất lại với nhau, ta có:
x² - 10x - ax + 10a = x² - (b + c)x + bc
So sánh các hệ số của hai đa thức, ta có hệ thức:
-10x - ax = -(b + c)x
10a = bc
Từ đó, ta suy ra:
· 10 - a = -(b + c) --> a = 10 + b + c
Thay vào biểu thức 10a = bc, ta có:
10(10 + b + c) = bc
100 + 10b + 10c = bc
Vì đa thức (x−a)(x−10)+1(x−a)(x−10)+1 có thể phân tích thành tích của hai đa thức bậc nhất có hệ số nguyên nên ta chỉ có hai cách phân tích duy nhất là:
1)(x−a)(x−10)=(x+b)(x+c)2)(x−a)(x−10)=(−x+b)(−x+c)1)(x−a)(x−10)=(x+b)(x+c)2)(x−a)(x−10)=(−x+b)(−x+c) với b,c∈Zb,c∈Z
Ta sẽ tìm aa trong trường hợp 1)1), trường hợp còn lại làm tương tự
(x−a)(x−10)+1=(x−b)(x−c)⇔x2−(a+10)x+10a+1=x2+(b+c)x+bc(x−a)(x−10)+1=(x−b)(x−c)⇔x2−(a+10)x+10a+1=x2+(b+c)x+bc
Đồng nhất, ta được {b+c=−(a+10)bc=10a+1{b+c=−(a+10)bc=10a+1
⇒b,c⇒b,c là hai nghiệm nguyên của PT X2+(a+10)X+10a+1=0X2+(a+10)X+10a+1=0 với aa nguyên
⇒Δ=(a+10)2−40a−4=m2(m∈N)⇔(a−10)2−4=m2⇔(a−m−10)(a+m−10)=4⇒Δ=(a+10)2−40a−4=m2(m∈N)⇔(a−10)2−4=m2⇔(a−m−10)(a+m−10)=4
Vì a−m−10a−m−10 và a+m−10a+m−10 cùng tính chẵn lẻ và a+m−10≥a−m−10a+m−10≥a−m−10 nên:
{a+m−10=2a−m−10=2⇒a=12{a+m−10=2a−m−10=2⇒a=12
Hoặc :
{a+m−10=−2a−m−10=−2⇒a=8
\(x^2-\left(a+10\right)x+10a+1=0\)
\(\Delta=a^2+20a+100-40a-4=\left(a-10\right)^2-4=\left(a-6\right)\left(a-14\right)\)
a thuộc Z => \(\Delta\) là số nguyên ; để TM yêu cầu => \(\Delta\) là số chính phương
=> a =6 ; a =14
Lỗi kìa