Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân tích đa thức thành tích của một đa thức bậc nhất có các hệ số nguyên, ta cần tìm giá trị của a và b sao cho đa thức (x - a)(x - 10) + 1 có phân tích thành tích của đa thức bậc nhất.
Đặt đa thức bậc nhất có hệ số nguyên là (x - b).
Để phân tích đa thức ban đầu thành tích của đa thức bậc nhất, ta sẽ nhân các đa thức bậc nhất có hệ số nguyên lại với nhau:
(x - a)(x - 10) = (x - b)(x - c)
Nhân hai đa thức bậc nhất lại với nhau, ta có:
x² - 10x - ax + 10a = x² - (b + c)x + bc
So sánh các hệ số của hai đa thức, ta có hệ thức:
-10x - ax = -(b + c)x
10a = bc
Từ đó, ta suy ra:
· 10 - a = -(b + c) --> a = 10 + b + c
Thay vào biểu thức 10a = bc, ta có:
10(10 + b + c) = bc
100 + 10b + 10c = bc
Đặt \(P\left(x\right)=\left(x-a\right)\left(x+a\right)+5=x^2-a^2+5\). Để P(x) phân tích được thành tích các đa thức bậc nhất có hệ số nguyên thì \(P\left(x\right)=\left(x-c\right)\left(x-d\right)\) (vì hệ số cao nhất của P(x) bằng 1). Ta có:
\(P\left(x\right)=x^2-\left(c+d\right)x+cd\)
Đồng nhất hệ số, ta thu được \(\left\{{}\begin{matrix}c+d=0\\cd=5-a^2\end{matrix}\right.\). Không mất tính tổng quát, giả sử \(c>0\) \(\Rightarrow\left\{{}\begin{matrix}d=-c\\-c^2=5-a^2\end{matrix}\right.\)
\(\Rightarrow a^2-c^2=5\) \(\Leftrightarrow\left(a-c\right)\left(a+c\right)=5\). Do \(a-c< a+c\) nên ta xét các trường hợp:
TH1: \(\left\{{}\begin{matrix}a-c=1\\a+c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2\end{matrix}\right.\) \(\Rightarrow d=-2\). Thử lại, ta thấy thỏa mãn.
TH2: \(\left\{{}\begin{matrix}a-c=-5\\a+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\c=2\end{matrix}\right.\)\(\Rightarrow d=-2\). Thử lại, ta thấy thỏa mãn.
Vậy \(a=\pm3\) thỏa ycbt.
b) Kĩ thuật tương tự nhé.
Để Q(x) phân tích được thành tích của 2 đa thức bậc nhất hệ số nguyên thì
a) Đối với đa thức (x+a)(x-a)+5:
Để phân tích thành tích các đa thức bậc nhất có hệ số nguyên, ta cần giải phương trình (x + a)(x - a) + 5 = 0:
x² - a² + 5 = 0.
Các giá trị của a mà khi thay vào phương trình trên, phương trình có nghiệm nguyên là các giá trị riêng. Nhưng phương trình x² - a² + 5 = 0 là một phương trình bậc hai, do đó ta có thể sử dụng công thức giải nghiệm của phương trình bậc hai:
x = [-b ± √(b² - 4ac)] / (2a)
Ở đây, a = 1, b = 0 và c = -a² + 5.
Thay vào phương trình, ta có:
x = [0 ± √(0 - 4(1)(-a² + 5)) / (2(1)]
= [± √(4a² - 20)] / 2
= ± √(a² - 5) / 2.
Để phương trình có nghiệm nguyên, a² - 5 phải là bình phương của một số nguyên. Ta có thể tìm các giá trị nguyên của a bằng cách xét từng giá trị nguyên cho a và kiểm tra xem a² - 5 có phải là bình phương của một số nguyên hay không.
Ví dụ, nếu a = 1, ta có:
a² - 5 = 1² - 5 = -4,
-4 không phải là bình phương của một số nguyên, vì vậy a = 1 không phải là giá trị riêng của đa thức.
Tiếp tục quá trình trên với các giá trị nguyên khác của a, ta sẽ tìm được giá trị của a mà khi thay vào phương trình (x + a)(x - a) + 5 = 0, phương trình có nghiệm nguyên là giá trị riêng.
b) Đối với đa thức (a - x)(5 - x) - 3:
Phân tích thành tích các đa thức bậc nhất có hệ số nguyên của đa thức này cũng tương tự như trên. Ta giải phương trình (a - x)(5 - x) - 3 = 0:
(a - x)(5 - x) - 3 = 0.
Tương tự như trên, ta có thể sử dụng công thức giải nghiệm của phương trình bậc hai:
x = [-b ± √(b² - 4ac)] / (2a).
Ở đây, a = 1, b = 6 - a và c = -3.
Thay vào phương trình, ta có:
x = [(a - 6) ± √((6 - a)² - 4(-3)(1))] / (2)
Sau đó, ta tìm các giá trị của a mà làm cho phương trình có nghiệm nguyên.
Giả sử (x-a)(x-10)+1 phân tích thành tích 2 đa thức bậc bhất có hệ số nguyên:
(x-a)(x-10)+1 = (x-b)(x-c)
x²-(10+a)x+10a+1 = x²-(b+c)x+bc
=> 10+a = b+c và 10a+1 = bc.
bc=10a+1=10a+100 – 99 = 10(a+10)-99 = 10(b+c)-99
=>bc=10(b+c)-99
=>bc-10b-10c+100=1
(b-10)(c-10)=1
=>b-10=c-10=±1
b-10=c-10=1 => b=c=11 => a=b+c-10=12
b-10=c-10=-1 => b=c=9 => a=b+c-10=8
Vậy a=10 và a=8
a=12 => (x-a)(x-10)+1 =(x-12)(x-10)+1 = x²-22x+121 =(x-11)(x-11)
a=8 => (x-a)(x-10)+1 =(x-8)(x-10)+1 = x²-18x+81=(x-9)(x-9)