K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)

Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)

\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)

\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:

\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)

Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)

\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..) 

Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\)  với \(0\le v\le1\)

Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)

Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)

Ta có đpcm.

P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.

23 tháng 1 2020

Quên: 

\(f\left(v\right)_{min}=2\Leftrightarrow\left(a;b;c\right)=\left(2;0;0\right)\) và các hoán vị.

\(f\left(v\right)_{max}=4\Leftrightarrow a=b=c=1\)

13 tháng 9 2017

a, Nhân ba vế lại ta được:

ab.bc.ca = 3/5.4/5.3/4

(abc)2 = \(\left(\pm1\right)^2\)

=> abc = 1 hoặc abc = -1

Với abc = 1 => \(\hept{\begin{cases}\frac{3}{5}c=1\\\frac{4}{5}a=1\\\frac{3}{4}b=1\end{cases}\Rightarrow\hept{\begin{cases}c=\frac{5}{3}\\a=\frac{5}{4}\\b=\frac{4}{3}\end{cases}}}\)

Với abc = -1 => \(\hept{\begin{cases}\frac{3}{5}c=-1\\\frac{4}{5}a=-1\\\frac{3}{4}b=-1\end{cases}\Rightarrow\hept{\begin{cases}c=-\frac{5}{3}\\a=\frac{-5}{4}\\b=-\frac{4}{3}\end{cases}}}\)

b, cộng 3 vế lại ta được:

a(a+b+c)+b(a+b+c)+c(a+b+c)=-12+18+30

(a+b+c)2=36

(a+b+c)2=\(\left(\pm6\right)^2\)

=> a+b+c = 6 hoặc a+b+c = -6

Với a+b+c=6 => \(\hept{\begin{cases}6a=-12\\6b=18\\6c=30\end{cases}\Rightarrow\hept{\begin{cases}a=-2\\b=3\\c=5\end{cases}}}\)

Với a+b+c=-6 => \(\hept{\begin{cases}-6a=-12\\-6b=18\\-6c=30\end{cases}\Rightarrow\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}}\)

NV
14 tháng 4 2022

Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)

\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)

\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)

Nhân phá và rút gọn 2 vế:

\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)

Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c\)

17 tháng 5 2021

1)Từ đề bài:

`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`

`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`

`<=>a=b=c-2`

17 tháng 5 2021

`ab+bc+ca=abc`

`<=>1/a+1/b+1/c=1`

`<=>(1/a+1/b+1/c)^2=1`

`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`

`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`

`a+b+c=0`

Chia 2 vế cho `abc`

`=>1/(ab)+1/(bc)+1/(ca)=0`

`=>2/(ab)+2/(bc)+2/(ca)=0`

`=>1/a^2+1/b^2+1/c^2=1-0=1`

7 tháng 9 2017

A) a2+b2+c2+ab+bc+ca>=0 (*)

<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0

<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0

<=> (a+b)2+(b+c)2+(c+a)2>=0

BĐT cuối luôn đúng với mọi a,b,c 

Vậy BĐT (*) đc cm

Phần B cũng tương tự nhé

7 tháng 9 2017

a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2

Mà \(\left(a+b+c\right)^2\ge0\forall x\)

Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)

b) hình như sai đề rồi bạn à !

10 tháng 4 2018

Cách khác dễ hiểu hơn

Áp dụng BĐT Cô si 2 số ko âm 

Ta có: \(\frac{a^3}{b}+ab\ge2\sqrt{a^4}=2a^2\)

Tương tự rồi sau đó lại có:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)

10 tháng 4 2018

Áp dụng BĐT Cô si với 3 số k âm 

\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge\frac{3\sqrt[3]{a^3.a^3.b^2}}{b^2}=3a^2\)

\(\frac{b^3}{c}+\frac{b^3}{c}+b^2\ge3b^2\)

\(\frac{c^3}{a}+\frac{c^3}{a}+c^2\ge3c^2\)

\(\Rightarrow2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+a^2+b^2+c^2\ge3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)