K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)

30 tháng 6 2018

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)

=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)

2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)

NV
18 tháng 2 2020

Trong câu hỏi tương tự có người làm rồi đó bạn:

https://hoc24.vn/hoi-dap/question/513461.html

31 tháng 10 2020

\(M=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-a\right)}\)

Đánh giá đại diện: \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)

Tương tự: \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)

                   \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)

\(\Rightarrow M=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)

\(\Rightarrow M=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(\Rightarrow M=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2N\left(đpcm\right)\)

27 tháng 4 2018

bunhia:

\(\left(1+1+1\right)\left(a^4+b^4+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow a^4+b^4+c^4\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3}\)

Ta cm bđt sau:\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\)(tự khai triển luôn đúng)

\(\Rightarrow a^2+b^2+c^2\ge12\Rightarrow\dfrac{\left(a^2+b^2+c^2\right)^2}{3}\ge\dfrac{12^2}{3}=48\)

\(\Rightarrow a^4+b^4+c^4\ge48\)

Dấu ''='' xảy ra khi a=b=c=2

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

Đặt biểu thức đã cho là $P$

Do $a+b+c=6$ nên:

$P=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}$

$2P=\frac{2ab}{2a+b}+\frac{2bc}{2b+c}+\frac{2ca}{2c+a}$

$=b-\frac{b^2}{2a+b}+c-\frac{c^2}{2b+c}+a-\frac{a^2}{2c+a}$

$=a+b+c-\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)$

Áp dụng BĐT Cauchy-Schwarz:

$\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)\geq \frac{(b+c+a)^2}{2a+b+2b+c+2c+a}=\frac{a+b+c}{3}$

Do đó: $2P\leq a+b+c-\frac{a+b+c}{3}=\frac{2}{3}(a+b+c)=\frac{2}{3}.6=4$

$\Rightarrow P\leq 2$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

Đặt biểu thức đã cho là $P$

Do $a+b+c=6$ nên:

$P=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}$

$2P=\frac{2ab}{2a+b}+\frac{2bc}{2b+c}+\frac{2ca}{2c+a}$

$=b-\frac{b^2}{2a+b}+c-\frac{c^2}{2b+c}+a-\frac{a^2}{2c+a}$

$=a+b+c-\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)$

Áp dụng BĐT Cauchy-Schwarz:

$\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)\geq \frac{(b+c+a)^2}{2a+b+2b+c+2c+a}=\frac{a+b+c}{3}$

Do đó: $2P\leq a+b+c-\frac{a+b+c}{3}=\frac{2}{3}(a+b+c)=\frac{2}{3}.6=4$

$\Rightarrow P\leq 2$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

5 tháng 11 2017

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)Ta có: \(a^2+b^2+c^2\ge0\) .Dấu "=" xảy ra \(\Leftrightarrow a=b=c=0\)

Suy ra \(ab+bc+ca=-\dfrac{a^2+b^2+c^2}{2}\le-\dfrac{0}{2}=0\)

Dấu "=" xảy ra \(\Leftrightarrow a^2=b^2=c^2=0\Leftrightarrow a=b=c=0\)