Tìm các cặp số nguyên [x,y]
xy=x-y
xy+12=xy
giúp tui với. Cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-2\right)^2.\left(y-3\right)=-4=\left(-1\right).4=\left(-4\right).1=\left(-2\right).2=2.\left(-2\right)\)
Nếu \(\left(x-2\right)^2=1\Rightarrow x-2=\pm1\Rightarrow x=\left\{3;1\right\}\)
\(y-3=-4\Rightarrow y=-1\)
Nếu \(\left(x-2\right)^2=-4\) => Ko thực hiện được (vì bình phương một số không thể bằng một số âm) (Loại)
Nếu \(\left(x-2\right)^2=2\) (loại, ko đúng)
Nếu \(\left(x-2\right)^2=-2\) ( Không thực hiện được) (Loại)
Vậy (x;y) = (3;-1) ; (1;-1)
\(Ta \) \(có : \) \(x. ( y +2 ) - y = 3\)
\(\Rightarrow\)\(x. ( y + 2 ) - y = 1 + 2\)
\(\Rightarrow\)\(x. ( y + 2 ) - y - 2 = 1 \)
\(\Rightarrow\)\(x. (y + 2 ) - ( y + 2 )=1\)
\(\Rightarrow\)\((y+ 2 )(x - 1 ) = 1\)
\(Ta\) \(Lập \) \(Bảng :\)
\(x - 1\) | \(1\) |
\(y + 2\) | \(1\) |
\(x\) | \(2 \) |
\(y\) | \(- 1\)\(( loại )\) |
\(Vậy : Không \) \(có \) \(giá\) \(trị\) \(của\) \(x,y\)
ta có x-y+2xy=3<=>2x-2y+4xy=6<=>2x(2y+1)-(2y+1)=5<=>(2x-1)(2y+1)=7
Vì (2x-1)(2y+1)=7 => \(2x-1\inƯ\left(7\right)\)={1,-1,7,-7}{}
=>\(x\in\){1,0,4,-3}=> y\(\in\){3,-4,0,-1}
Ta có:
x - y + 2xy = 3
Suy ra 2x - 2y + 4xy = 6
Suy ra 2x( 2y + 1 ) - ( 2y + 1 ) = 5
Suy ra ( 2x - 1 ) ( 2y + 1 ) = 7
Vì ( 2x - 1 ) ( 2y + 1 ) = 7
Suy ra 2x -1 thuộc Ư (7) = { 1 ; -1 ; 7 ; -7 }
Suy ra x thuộc { 1 ; 0 ; 4 ; -3 }
y thuộc { 3 ; -4 ; 0 ; -1 }
Em mới hc lp 5 thui ạ!
Tui mới hc lp 5 thui,so sorry