tổng các giá trị nguyên x thỏa mãn | 2x - 2 | + | 2x + 4 | = 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là dạng bất phương trình chứa ẩn trong dấu giá trị tuyệt đối em nhé:
Kiến thức cần nhớ: |F(\(x\))| ≤ a ( a > 0) ⇔ -a ≤ F(\(x\)) ≤ a
Giải:
2|2\(x\) - 5| ≤ 6 ⇔ |2\(x\) - 5| ≤ 6: 2 = 3
⇔ |2\(x\) - 5| ≤ 3 ⇔ -3 ≤ 2\(x\) - 5 ≤ 3 ⇔ -3 + 5 ≤ 2\(x\) ≤ 3 + 5
⇔ 2 ≤ 2\(x\) ≤ 8 ⇔ 1 ≤ \(x\) ≤ 4 vì \(x\in\) Z nên \(x\) \(\in\) { 1; 2; 3; 4}
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
a) \(x^2-5x+4=0\)
\(\Leftrightarrow\)\(x^2-x-4x+4=0\)
\(\Leftrightarrow\)\(x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Vậy tổng các giá trị nguyên của x thỏa mãn là:
\(1+4=5\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(\left|2x-2\right|+\left|2x+4\right|=\left|2-2x\right|+\left|2x+4\right|\ge\left|2-2x+2x+4\right|=6\)
Dấu \(=\)xảy ra khi \(\left(2-2x\right)\left(2x+4\right)\ge0\Leftrightarrow-2\le x\le1\).
Các giá trị \(x\)nguyên thỏa mãn là \(-2,-1,0,1\).
Vậy tông các giá trị \(x\)nguyên thỏa mãn là \(1\).
|2x-2|+|2x+4|=6
2x-2+2x+4=6
4x+2=6
4x=4
x=1
Vậy:.......
*Chắc thế