K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 2 2021

\(\left|2x-2\right|+\left|2x+4\right|=\left|2-2x\right|+\left|2x+4\right|\ge\left|2-2x+2x+4\right|=6\)

Dấu \(=\)xảy ra khi \(\left(2-2x\right)\left(2x+4\right)\ge0\Leftrightarrow-2\le x\le1\).

Các giá trị \(x\)nguyên thỏa mãn là \(-2,-1,0,1\).

Vậy tông các giá trị \(x\)nguyên thỏa mãn là \(1\).

|2x-2|+|2x+4|=6

2x-2+2x+4=6

4x+2=6

4x=4

x=1

Vậy:.......

*Chắc thế

11 tháng 2 2016

Câu trai có vấn đề

11 tháng 2 2016

Cái này mà kêu lp 4 hỏ

10 tháng 5 2023

Đây là dạng bất phương trình chứa ẩn trong dấu giá trị tuyệt đối em nhé:   

Kiến thức cần nhớ:  |F(\(x\))| ≤ a ( a > 0) ⇔ -a ≤ F(\(x\)) ≤ a

                        Giải:       

2|2\(x\) - 5| ≤  6 ⇔  |2\(x\) - 5| ≤ 6: 2 = 3

⇔  |2\(x\) - 5| ≤ 3  ⇔ -3 ≤ 2\(x\) - 5 ≤ 3  ⇔  -3 + 5 ≤ 2\(x\) ≤ 3 + 5

⇔ 2 ≤ 2\(x\) ≤ 8  ⇔ 1 ≤ \(x\) ≤ 4 vì  \(x\in\) Z nên \(x\) \(\in\) { 1; 2; 3; 4}

                                   

                     

 

                                

 

26 tháng 7 2015

có khùng hk vậy hùng tự đăng tự giải ls

 

30 tháng 6 2015

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

17 tháng 3 2022

Chọn C. Cặp x, y thỏa mãn là (-1;-6) hoặc (0;2).

4 tháng 3 2016

 số các giá trị là 3

10 tháng 1 2018

a)              \(x^2-5x+4=0\)

\(\Leftrightarrow\)\(x^2-x-4x+4=0\)

\(\Leftrightarrow\)\(x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

Vậy tổng các giá trị nguyên của x thỏa mãn là:

                \(1+4=5\)

7 tháng 8 2015

\(pt\Leftrightarrow\left|2x-3\right|+2\left|2x-3\right|=3\)\(\Leftrightarrow3\left|2x-3\right|=3\Leftrightarrow\left|2x-3\right|=1\)

\(\Leftrightarrow2x-3=1\text{ hoặc }2x-3=-1\)

\(\Leftrightarrow x=2\text{ hoặc }x=1\)

\(\text{Vậy, }x\in\left\{2;1\right\}\)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)